Autonomous Robots

, Volume 41, Issue 2, pp 417–436 | Cite as

Underwater map-based localization using flow features

  • Naveed MuhammadEmail author
  • Gert Toming
  • Jeffrey A. Tuhtan
  • Mark Musall
  • Maarja Kruusmaa


Underwater robots conventionally use vision and sonar sensors for autonomous localization. Fish on the other hand also have the ability to sense flow, which assists them in navigating. Recently, it has been shown that bioinspired flow sensing can be used in robotics, for tasks such as object detection and positioning in laboratory conditions. In this paper we present a map-based localization technique using flow sensing. The technique is based upon compact histogram features that are extracted from frequency spectra of pressure data acquired using a single piezo-resistive sensor. The features are used to create flow-based map of an underwater environment, and later during an off-line localization phase, similar features are again extracted and used inside a particle filter in order to perform localization. Experiments carried out using pressure data acquired inside a model fish pass validate the proposed technique.


Flow sensing Flow-feature extraction Map-based localization Underwater robotics 



This work has been funded by the project FISHVIEW, that has received funding from BONUS, the joint Baltic Sea research and development programme (Art 185), funded jointly from the European Unions Seventh Programme, Keskkonnainvesteeringute Keskus (Estonia), Forschungszentrum Jlich Beteiligungsgesellschaft mbH (Germany) and Academy of Finland.

Supplementary material

10514_2016_9558_MOESM1_ESM.mpg (2.4 mb)
Supplementary material 1 (mpg 2440 KB)


  1. Akanyeti, O., Chambers, L., Jezov, J., Brown, J., Venturelli, R., Kruusmaa, M., et al. (2013). Self-motion effects on hydrodynamic pressure sensing: Part I. Forward-backward motion. Bioinsperation and Biomimetics, 8, 026001.CrossRefGoogle Scholar
  2. Angeli, A., Filliat, D., Doncieux, S., & Meyer, J. A. (2008). Fast and incremental method for loop-closure detection using bags of visual words. IEEE Transactions on Robotics, 24(5), 1027–1037.CrossRefGoogle Scholar
  3. Bingham, B., & Seering, W. (2006). Hypothesis grids: Improving long baseline navigation for autonomous underwater vehicles. IEEE Journal of Oceanic Engineering, 31(1), 209–218.CrossRefGoogle Scholar
  4. Carreras, M., Ridao, P., Garcia, R., & Nicosevici, T. (2003). Vision-based localization of an underwater robot in a structured environment. In IEEE international conference on robotics and automation, Taipei, Taiwan.Google Scholar
  5. Cha, S. H. (2008). Taxonomy of nominal type histogram distance measures. In American conference on applied mathematics, World Scientific and Engineering Academy and Society (WSEAS) (pp 325–330).Google Scholar
  6. Chen, L., Wang, S., McDonald-Maier, K., & Hu, H. (2013). Towards autonomous localization and mapping of auvs: A survey. International Journal of Intelligent Unmanned Systems, 2, 97–120.CrossRefGoogle Scholar
  7. Chen, N., Tucker, C., Engel, J. M., Yang, Y., Pandya, S., & Liu, C. (2007). Design and characterization of artificial hair sensor for flow sensing with ultrahigh velocity and angular sensivity. Journal of Microelectromechanical Systems, 16, 999–1014.CrossRefGoogle Scholar
  8. Corke, P., Detweiler, C., Dunbabin, M., Hamilton, M., Rus, D., & Vasilescu, I. (2007). Experiments with underwater robot localization and tracking. In IEEE International conference on robotics and automation, Rome, Italy.Google Scholar
  9. Dagamesh, A. M. K., Bruinink, C., Droodendink, H., Wiegerink, R. J., Lammerink, T. S. J., & Krijnen, G. J. M. (2010). Engineering of biomimetic hair-flow sensor arrays dedicated to high-resolution flow field measurements. In IEEE sensors.Google Scholar
  10. Eskinja, Z., Fabekovic, Z., & Vukic, Z. (2007). Localization of autonomous underwater vehicles by sonar image processing. In International symposium ELMAR, Zadar, Croatia.Google Scholar
  11. Fernandez, V. I., Maertens, A., Yaul, F. M., Dahl, J., Lang, J. H., & Triantafyllou, M. S. (2011). Lateral-line-inspired sensor arrays for navigation and object identification. Marine Technology Society Journal, 45, 130–146.CrossRefGoogle Scholar
  12. Forouher, D., Hartmann, J., Litza, M., & Maehle, E. (2011). Sonar-based fastslam in an underwater environment using walls as features. In 15th international conference on advanced robotics (pp. 588–593).Google Scholar
  13. Gao, A., & Triantafyllou, M. (2012). Bio-inspired pressure sensing for active yaw control of underwater vehicles. In Oceans.Google Scholar
  14. Jakuba, M. V., Roman, C. N., Singh, H., Murphy, C., Kunz, C., Willis, C., et al. (2008). Long-baseline acoustic navigation for under-ice autonomous underwater vehicle operations. Journal of Field Robotics, 25, 861–879.CrossRefGoogle Scholar
  15. Jezov, J., Akanyeti, O., Chambers, L. D., & Kruusmaa, M. (2012). Sensing oscilations in unsteady flow for better robotic swimming efficiency. In IEEE international conference on systems, man, and cypernatics, Seoul, Korea.Google Scholar
  16. Kottapalli, A. G. P., Asadina, M., Miao, J. M., Barbastathis, G., & Triantafyllou, M. S. (2012). A flexible liquid crystal polymer mems pressure sensor array for fish-like underwater sensing. Smart Materials and Structures, 21, 115030.CrossRefGoogle Scholar
  17. Lagor, F. D., DeVries, L. D., Waychoff, K. M., & Paley, D. A. (2013). Bio-inspired flow sensing and control: Atutonomous underwater navigation using distributed pressure measurements. In 18th international symposium on unmanned untethered submersible technology, Portsmouth, NH.Google Scholar
  18. Mallios, A., Ribas, D., & Ridao, P. (2009). Localization advances in the unstructured underwater environment. In Proceedings of the 9th hellenic symposium of oceanography and fishery (pp. 111–116).Google Scholar
  19. Matos, A., Cruz, N., Martins, A., & Pereira, F. L. (1999). Development and implementation of a low-cost lbl navigation system for an auv. In IEEE Oceans, Seattle, WA.Google Scholar
  20. Mogdans, J., & Bleckmann, H. (2012). Coping with flow: Behavior, neurophysiology and modeling of the fish lateral line system. Biological Cybernetics, 106(11–12), 627–642.CrossRefGoogle Scholar
  21. Muhammad, N., Strokina, N., Toming, G., Tuhtan, J., Kamarainen, J. K., & Kruusmaa, M. (2015). Flow feature extraction for underwater localization: preliminary results. In IEEE international conference on robotics and automation, Seattle, Washington.Google Scholar
  22. Paull, L., Saeedi, S., Seto, M., & Li, H. (2014). Auv navigation and localization: A review. IEEE Jounal of Ocean Engineering, 39, 131–149.CrossRefGoogle Scholar
  23. Peleshanko, S., Julian, M. D., Ornatska, M., McConney, M. E., LeMieux, M. C., Chen, N., et al. (2007). Hydrogel-encapsulated microfabricated hair mimicking fish cupula neuromast. Advanced Materials, 19, 2903–2909.CrossRefGoogle Scholar
  24. Plueddemann, A. J., Kukulya, A. L., Stokey, R., & Freitag, L. (2012). Autonomous underwater vehicle operations beneath coastal sea ice. IEEE/ASME Transactions on Mechatronics, 17(1), 54–64.CrossRefGoogle Scholar
  25. Qualtieri, A., Rizzi, F., Epifani, G., Ernits, A., Kruusmaa, M., & Vittorio, M. D. (2012). Parylene-coated bioinspired artificial hair cell for liquid flow sensing. Microelectronic Engineering, 98, 516–519.CrossRefGoogle Scholar
  26. Ridao, P., Carreras, M., Ribas, D., & Garcia, R. (2010). Visual inspection of hydroelectric dams using an autonomous underwater vehicle. Journal of Field Robotics, 27, 759–778.CrossRefGoogle Scholar
  27. Salumae, T., & Kruusmaa, M. (2013). Flow-relative control of an underwater robot. Proceedings of the Royal Society A, 469, 1–19.CrossRefGoogle Scholar
  28. Salumae, T., Rano, I., Akanyeti, O., & Kruusmaa, M. (2012). Against the flow: A braitenberg controller for a fish robot. In International conference on robotics and automation, Saint Paul, MN.Google Scholar
  29. Strokina, N., Kamarainen, J. K., Tuhtan, J., Fuentes-Prez, J., & Kruusmaa, M. (2015). Joint estimation of bulk flow velocity and angle using a lateral line probe. IEEE Transactions on Instrumentation and Measurements (accepted to appear).Google Scholar
  30. Thrun, S., Fox, D., Burgard, W., & Dellaert, F. (2001). Robust monte carlo lozalization for mobile robots. Artificial Intelligence, 128, 99–141.CrossRefzbMATHGoogle Scholar
  31. Venturelli, R., Akanyeti, O., Visentin, F., Jezov, J., Chambers, L., Toming, G., et al. (2012). Hydrodynamic pressure sensing with an artificial lateral line in steady and unsteady flows. Bioinsperation and Biomimetrics, 7, 036004.CrossRefGoogle Scholar
  32. Watanabe, Y., Ochi, H., Shimura, T., & Hattori, T. (2009). A tracking of auv with integration of ssbl acoustic positioning and transmitted ins data. In OCEANS 2009—EUROPE.Google Scholar
  33. Yun, X., Bachmann, E. R., McGhee, R. B., Whalen, R. H., Roberts, R. L., Knapp, R. G., et al. (1999). Testing and evaluation of an integrated GPS/INS system for small AUV navigation. IEEE Jounal of Ocean Engineering, 24, 396–404.CrossRefGoogle Scholar
  34. Zhang, P., Milios, E. E., & Gu, J. (2004). Underwater robot localization using artificial visual landmarks. In IEEE international conference on robotics and biomimetics.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Naveed Muhammad
    • 1
    Email author
  • Gert Toming
    • 1
  • Jeffrey A. Tuhtan
    • 2
  • Mark Musall
    • 3
  • Maarja Kruusmaa
    • 1
  1. 1.Center for BioroboticsTallinn University of TechnologyTallinnEstonia
  2. 2.SJE Ecohydraulic Engineering GmbHStuttgartGermany
  3. 3.Institute of Water and River Basin ManagementKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations