Autonomous Robots

, Volume 40, Issue 3, pp 561–580 | Cite as

Multi-contact vertical ladder climbing with an HRP-2 humanoid

  • Joris Vaillant
  • Abderrahmane Kheddar
  • Hervé Audren
  • François Keith
  • Stanislas Brossette
  • Adrien Escande
  • Karim Bouyarmane
  • Kenji Kaneko
  • Mitsuharu Morisawa
  • Pierre Gergondet
  • Eiichi Yoshida
  • Suuji Kajita
  • Fumio Kanehiro
Article

Abstract

We describe the research and the integration methods we developed to make the HRP-2 humanoid robot climb vertical industrial-norm ladders. We use our multi-contact planner and multi-objective closed-loop control formulated as a QP (quadratic program). First, a set of contacts to climb the ladder is planned off-line (automatically or by the user). These contacts are provided as an input for a finite state machine. The latter builds supplementary tasks that account for geometric uncertainties and specific grasps procedures to be added to the QP controller. The latter provides instant desired states in terms of joint accelerations and contact forces to be tracked by the embedded low-level motor controllers. Our trials revealed that hardware changes are necessary, and parts of software must be made more robust. Yet, we confirmed that HRP-2 has the kinematic and power capabilities to climb real industrial ladders, such as those found in nuclear power plants and large scale manufacturing factories (e.g. aircraft, shipyard) and construction sites.

Keywords

Humanoid robots Multi-contact motion planning and control Field humanoid robots Disaster humanoid robots 

Supplementary material

10514_2016_9546_MOESM1_ESM.mp4 (9.9 mb)
Supplementary material 1 (mp4 10098 KB)
10514_2016_9546_MOESM2_ESM.mp4 (12 mb)
Supplementary material 2 (mp4 12260 KB)
10514_2016_9546_MOESM3_ESM.mp4 (10.6 mb)
Supplementary material 3 (mp4 10822 KB)
10514_2016_9546_MOESM4_ESM.mp4 (1.5 mb)
Supplementary material 4 (mp4 1540 KB)

References

  1. Abe, Y., da Silva, M., & Popović, J. (2007). Multiobjective control with frictional contacts. In Eurographics/ACM SIGGRAPH symposium on computer animation (pp. 249–258). San Diego, CA.Google Scholar
  2. Audren, H., Vaillant, J., Kheddar, A., Escande, A., Kaneko, K., & Yoshida, E. (2014). Model preview control in multi-contact motion– application to a humanoid robot. In IEEE/RSJ international conference on intelligent robots and systems. Chicago, IL.Google Scholar
  3. Bevly, D.M., Farritor, S., & Dubowsky, S. (2000). Action module planning and its application to an experimental climbing robot. In IEEE international conference on robotics and automation (pp. 4010–4015). San Francisco, CA.Google Scholar
  4. Bouyarmane, K., Escande, A., Lamiraux, F., & Kheddar, A. (2009). Potential field guide for humanoid multicontacts acyclic motion planning. In IEEE international conference on robotics and automation (pp. 1165–1170). Kobe.Google Scholar
  5. Bouyarmane, K., & Kheddar, A. (2010). Static multi-contact inverse problem for multiple humanoid robots and manipulated objects. In IEEE-RAS international conference on humanoid robots (pp. 8–13). Nashville, TN. doi:10.1109/ICHR.2010.5686317.
  6. Bouyarmane, K., & Kheddar, A. (2011). Using a multi-objective controller to synthesize simulated humanoid robot motion with changing contact configurations. In IEEE/RSJ international conference on intelligent robots and systems. San Fransico, CA.Google Scholar
  7. Bouyarmane, K., & Kheddar, A. (2012). Humanoid robot locomotion and manipulation step planning. Advanced Robotics, 26(10), 1099–1126.CrossRefGoogle Scholar
  8. Bouyarmane, K., Vaillant, J., Keith, F., & Kheddar, A. (2012). Exploring humanoid robots locomotion capabilities in virtual disaster response scenarios. In IEEE-RAS international conference on humanoid robots. Osaka: Businness Inoovation Center.Google Scholar
  9. Bretl, T. (2006). Motion planning of multi-limbed robots subject to equilibrium constraints: The free-climbing robot problem. International Journal of Robotics Research, 25(4), 317–342.CrossRefGoogle Scholar
  10. Bretl, T., & Lall, S. (2008). Testing static equilibrium for legged robots. IEEE Transactions on Robotics, 24(4), 794–807.CrossRefGoogle Scholar
  11. Brossette, S., Escande, A., Vaillant, J., Keith, F., Moulard, T., & Kheddar, A. (2014). Integration of non-inclusive contacts in posture generation. In IEEE/RSJ international conference on intelligent robots and systems. Chicago, IL.Google Scholar
  12. Brossette, S., Vaillant, J., Keith, F., Escande, A., & Kheddar, A. (2013). Point-cloud multi-contact planning for humanoids: Preliminary results. In IEEE conference on robotics (pp. 19–24). Manila: Automation and Mechatronics Philippines.Google Scholar
  13. Collette, C., Micaelli, A., Andriot, C., & Lemerle, P. (2007). Dynamic balance control of humanoids for multiple grasps and non coplanar frictional contacts. In IEEE/RAS international conference on humanoid robots (pp. 81–88). Pittsburgh, PA.Google Scholar
  14. da Silva, M., Abe, Y., & Popović, J. (2008). Simulation of human motion data using short-horizon model-predictive control. Computer Graphics Forum, 27(2), 371–380.CrossRefGoogle Scholar
  15. de Lasa, M., Mordatch, I., & Hertzmann, A. (2010). Feature-based locomotion controllers. ACM Transactions on Graphics (SIGGRAPH), 29(4), 1.CrossRefGoogle Scholar
  16. Eilering, A., Yap, V., Johnson, J., & Hauser, K. (2014). Identifying support surfaces of climbable structures from 3d point clouds. In IEEE international conference on robotics and automation. Hong Kong.Google Scholar
  17. Escande, A., & Kheddar, A. (2009). Contact planning for acyclic motion with tasks constraints. In IEEE/RSJ international conference on intelligent robots and systems (pp. 435–440). St. Louis, MO.Google Scholar
  18. Escande, A., Kheddar, A., & Miossec, S. (2013). Planning contact points for humanoid robots. Robotics and Autonomous Systems, 61(5), 428–442.CrossRefGoogle Scholar
  19. Escande, A., Mansard, N., & Wieber, P. B. (2014). Hierarchical quadratic programming: Fast online humanoid-robot motion generation. The International Journal of Robotics Research, 33(7), 1006–1028.CrossRefGoogle Scholar
  20. Escande, A., Miossec, S., Benallegue, M., & Kheddar, A. (2014). A strictly convex hull for computing proximity distances with continuous gradient. IEEE Transactions on Robotics, 30(3), 666–678.CrossRefGoogle Scholar
  21. Fujii, S., Inoue, K., Takubo, T., Mae, Y., & Arai, T. (2008). Ladder climbing control for limb mechanism robot ASTERISK. In IEEE international conference on robotics and automation (pp. 3052–3057). Pasadena, CA.Google Scholar
  22. Gill, P.E.E., Hammarling, S.J., Murray, W., Saunders, M.A., & Wright, M.H. (1986). User’s guide for LSSOL (version 1.0): A Fortran package for constrained linear least-squares and convex quadratic programming. Technical Report 86-1. Standord, CA: Standford University.Google Scholar
  23. Hauser, K., Bretl, T., Latombe, J. C., Harada, K., & Wilcox, B. (2008). Motion planning for legged robots on varied terrain. International Journal of Robotics Research, 27(11–12), 1325–1349.CrossRefGoogle Scholar
  24. Herzog, A., Righetti, L., Grimminger, F., Pastor, P., & Schaal, S. (2014). Balancing experiments on a torque-controlled humanoid with hierarchical inverse dynamics. In IEEE/RSJ international conference on intelligent robots and systems. Chicago, IL.Google Scholar
  25. Hyon, S. H., Hale, J. G., & Cheng, G. (2007). Full-body compliant human-humanoid interaction: Balancing in the presence of unknown external forces. IEEE Transactions on Robotics, 23(5), 884–898.CrossRefGoogle Scholar
  26. Ibanez, A., Bidaud, P., & Padois, V. (2014). A distributed model predictive control approach for robust postural stability of a humanoid robot. In IEEE international conference on robotics and automation (pp. 202–209). Hong Kong.Google Scholar
  27. Iida, H., Hozumi, H., & Nakayama, R. (1989). Development of ladder climbing robot LCR-1. Journal of Robotics and Machatronics, 1, 311–316.Google Scholar
  28. Kanehiro, F., Morisawa, M., Suleiman, W., Kaneko, K., & Yoshida, E. (2010). Integrating geometric constraints into reactive leg motion generation. In IEEE/RSJ international conference on intelligent robots and systems (pp. 4069–4076).Google Scholar
  29. Kanoun, O., Lamiraux, F., & Wieber, P. B. (2011). Kinematic control of redundant manipulators: Generalizing the task-priority framework to inequality task. IEEE Transactions on Robotics, 27(4), 785–792.CrossRefGoogle Scholar
  30. Kuindersma, S., Permenter, F., & Tedrake, R. (2014). An efficiently solvable quadratic program for stabilizing dynamic locomotion. In IEEE international conference on robotics and automation. Hong Kong.Google Scholar
  31. Lee, S. H., & Goswami, A. (2012). A momentum-based balance controller for humanoid robots on non-level and non-stationary ground. Autonomous Robots, 33(4), 399–414.CrossRefGoogle Scholar
  32. Lengagne, S., Vaillant, J., Yoshida, E., & Kheddar, A. (2013). Generation of whole-body optimal dynamic multi-contact motions. The International Journal of Robotics Research, 32(9–10), 1104–1119.Google Scholar
  33. Liégeois, A. (1977). Automatic supervisory control of the configuration and behavior of multibody mechanisms. IEEE Transactions on Systems, Man and Cybernetics, 7(12), 868–871.CrossRefMATHGoogle Scholar
  34. Liu, M., Micaelli, A., Evrard, P., Escande, A., & Andriot, C. (2012). Interactive virtual humans: A two-level prioritized control framework with wrench bounds. IEEE Transactions on Robotics, 28(6), 1309–1322.CrossRefGoogle Scholar
  35. Luo, J., Zhang, Y., Hauser, K., Park, H.A., Paldhe, M., Lee, C.G., Grey, M., Stilman, M., Oh, J.H., Lee, J., Kim, I., & Oh, P. (2014). Robust ladder-climbing with a humanoid robot with application to the DARPA robotics challenge. In IEEE international conference on robotics and automation (pp. 2792–2798). Hong Kong.Google Scholar
  36. Mansard, N., Khatib, O., & Kheddar, A. (2009). A unified approach to integrate unilateral constraints in the stack of tasks. IEEE Transactions on Robotics, 25(3), 670–685.CrossRefGoogle Scholar
  37. Mordatch, I., de Lasa, M., & Hertzmann, A. (2010). Robust physics-based locomotion using low-dimensional planning. ACM Transactions on Graphics, 29(3).Google Scholar
  38. Mordatch, I., Todorov, E., & Popovi’c, Z. (2012). Discovery of complex behaviors through contact-invariant optimization. ACM Transactions on Graphics (SIGGRAPH), 31(4), 43.CrossRefGoogle Scholar
  39. Murray, R. M., Sastry, S. S., & Zexiang, L. (1994). A mathematical introduction to robotic manipulation. Boca Raton, FL: CRC Press Inc.MATHGoogle Scholar
  40. Nakai, H., Kuniyoshi, Y., Inaba, M., & Inoue, H. (2002). Metamorphic robot made of low melting point alloy. In IEEE/RSJ international conference on intelligent robots and systems (pp. 2025–2030). Lausanne.Google Scholar
  41. Nakamura, Y., Hanafusa, H., & Yoshikawa, T. (1987). Task-priority based redundancy control of robot manipulators. International Journal of Robotics Research, 6(2), 3–15.CrossRefGoogle Scholar
  42. Noda, S., Murooka, M., Nozawa, S., Kakiuchi, Y., Okada, K., & Inaba, M. (2014). Generating whole-body motion keep away from joint torque, contact force, contact moment limitations enabling steep climbing with real humanoid robot. In IEEE international conference on robotics and automation (pp. 1775–1781). Hong Kong.Google Scholar
  43. Ott, C., Roa, M.A., & Hirzinger, G. (2011). Posture and balance control for biped robots based on contact force optimization. In IEEE-RAS international conference on humanoid robots (pp. 26–33). Bled.Google Scholar
  44. Posa, M., Cantu, C., & Tedrake, R. (2014). A direct method for trajectory optimization of rigid bodies through contact. International Journal of Robotics Research, 33(1), 69–81.CrossRefGoogle Scholar
  45. Righetti, L., Buchli, J., Mistry, M., Kalakrishnan, M., & Schaal, S. (2013). Optimal distribution of contact forces with inverse-dynamics control. The International Journal of Robotics Research, 32(3), 280–298.CrossRefGoogle Scholar
  46. Righetti, L., & Schaal, S. (2012). Quadratic programming for inverse dynamics with optimal distribution of contact forces. In IEEE-RAS international conference on humanoid robots. Osaka: Businness Inoovation Center.Google Scholar
  47. Saab, L., Ramos, O. E., Keith, F., Mansard, N., Souères, P., & Fourquet, J. Y. (2012). Dynamic whole-body motion generation under rigid contacts and other unilateral constraints. IEEE Transactions on Robotics, 29(2), 346–362.CrossRefGoogle Scholar
  48. Salini, J., Barthélemy, S., & Bidaud, P. (2010). LQP-based controller design for humanoid whole-body motion (pp. 177–184). Berlin: Springer.Google Scholar
  49. Salini, J., Padois, V., & Bidaud, P. (2011). Synthesis of complex humanoid whole-body behavior: A focus on sequencing and tasks transitions. In IEEE international conference on robotics and automation (pp. 1283–1290). Shanghai.Google Scholar
  50. Schittkowski, K. (1986). Qld: A Fortran code for quadratic programming, user’s guide. Technical report. Mathematisches Institut, Universität Bayreuth.Google Scholar
  51. Sentis, L., Park, J., & Khatib, O. (2010). Compliant control of multicontact and center-of-mass behaviors in humanoid robots. IEEE Transactions on Robotics, 26, 483–501.CrossRefGoogle Scholar
  52. Sentis, L., Petersen, J., & Philippsen, R. (2013). Implementation and stability analysis of prioritized whole-body compliant controllers on a wheeled humanoid robot in uneven terrains. Autonomous Robots, 35(4), 301–319.CrossRefGoogle Scholar
  53. Siciliano, B., & Slotine, J.J.E. (1991). A general framework for managing multiple tasks in highly redundant robotic systems. In International conference on advanced robotics (Vol. 2, pp. 1211–1216). Pisa.Google Scholar
  54. Vaillant, J., Kheddar, A., Audren, H., Keith, F., Brossette, S., Kaneko, K., Morisawa, M., Yoshida, E., & Kanehiro, F. (2014). Vertical ladder climbing by HRP-2 humanoid robot. In IEEE-RAS international conference on humanoid robots (pp. 671–676). Madrid.Google Scholar
  55. Wächter, A., & Biegleri, L. (2006). On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming, 106(1), 25–57.CrossRefMathSciNetMATHGoogle Scholar
  56. Wensing, P.M., & Orin, D.E. (2013). Generation of dynamic humanoid behaviors through task-space control with conic optimization. In IEEE international conference on robotics and automation (pp. 3088–3094). Karlsruhe.Google Scholar
  57. Wieber, P.B. (2002). On the stability of walking systems. In IARP international workshop on humanoid and human friendly robotics. Tsukuba.Google Scholar
  58. Yoneda, H., Sekiyama, K., Hesegawa, Y., & Fukuda, T. (2008). Vertical ladder climbing motion with posture control for multi-locomotion robot. In IEEE/RSJ international conference on intelligent robots and systems (pp. 3579–3584). Nice.Google Scholar
  59. Zhang, Y., Luo, J., Hauser, K., Ellenberg, R., Oh, P., Park, H.A., & Paldhe, M. (2013). Motion planning of ladder climbing for humanoid robots. In IEEE international conference on technologies for practical robot applications (pp. 1–6).Google Scholar
  60. Zucker, M., Ratliff, N., Dragan, A., Pivtoraiko, M., Klingensmith, M., Dellin, C., et al. (2013). CHOMP: Covariant hamiltonian optimization for motion planning. International Journal of Robotics Research, 32(9–10), 1164–1193.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Joris Vaillant
    • 1
    • 2
  • Abderrahmane Kheddar
    • 1
    • 2
  • Hervé Audren
    • 1
    • 2
  • François Keith
    • 1
    • 2
  • Stanislas Brossette
    • 1
    • 2
  • Adrien Escande
    • 1
  • Karim Bouyarmane
    • 1
    • 2
  • Kenji Kaneko
    • 1
  • Mitsuharu Morisawa
    • 1
  • Pierre Gergondet
    • 1
  • Eiichi Yoshida
    • 1
  • Suuji Kajita
    • 1
  • Fumio Kanehiro
    • 1
  1. 1.CNRS-AIST Joint Robotics Laboratory (JRL), UMI3218/RLTsukubaJapan
  2. 2.CNRS-UM2 LIRMM Interactive Digital Human Group, UMR5506MontpellierFrance

Personalised recommendations