Skip to main content
Log in

Selective visual odometry for accurate AUV localization

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

In this paper we present a stereo visual odometry system developed for autonomous underwater vehicle localization tasks. The main idea is to make use of only highly reliable data in the estimation process, employing a robust keypoint tracking approach and an effective keyframe selection strategy, so that camera movements are estimated with high accuracy even for long paths. Furthermore, in order to limit the drift error, camera pose estimation is referred to the last keyframe, selected by analyzing the feature temporal flow. The proposed system was tested on the KITTI evaluation framework and on the New Tsukuba stereo dataset to assess its effectiveness on long tracks and different illumination conditions. Results of a live archaeological campaign in the Mediterranean Sea, on an AUV equipped with a stereo camera pair, show that our solution can effectively work in underwater environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. cvg.dsi.unifi.it.

References

  • Allotta, B., Colombo, C., et al. (2013). Teams of robots for underwater archaeology: The ARROWS project. In Proceedings of the 6th international congress on science and technology for the safeguard of cultural heritage in the Mediterranean basin.

  • Allotta, B., Bartolini, F., Conti, R., Costanzi, R., Gelli, J., Monni, N., Natalini, M., Pugi, L., & Ridolfi, A. (2014). MARTA: An AUV for underwater cultural heritage. In Proceedings of the underwater acoustics 2014.

  • Badino, H., & Kanade, T. (2011). A head-wearable short-baseline stereo system for the simultaneous estimation of structure and motion. In IAPR conference on machine vision application (pp. 185–189).

  • Badino, H., Yamamoto, A., & Kanade, T. (2013). Visual odometry by multi-frame feature integration. In Proceedings of the international workshop on computer vision for autonomous driving at ICCV.

  • Bay, H., Ess, A., Tuytelaars, T., & Van Gool, L. (2008). Speeded-up robust features (SURF). Computer Vision and Image Understanding, 110(3), 346–359.

    Article  Google Scholar 

  • Bellavia, F., Tegolo, D., & Trucco, E. (2010). Improving SIFT-based descriptors stability to rotations. In Proceedings of international conference on pattern recognition.

  • Bellavia, F., Tegolo, D., & Valenti, C. (2011). Improving Harris corner selection strategy. IET Computer Vision, 5(2), 87–96.

    Article  MathSciNet  Google Scholar 

  • Bellavia, F., Fanfani, M., Pazzaglia, F., & Colombo, C. (2013). Robust selective stereo SLAM without loop closure and bundle adjustment. In Proceedings of 17th international conference on image analysis and processing (pp. 462–471).

  • Bellavia, F., Tegolo, D., & Valenti, C. (2014). Keypoint descriptor matching with context-based orientation estimation. Image and Vision Computing, 32, 559–567.

    Article  Google Scholar 

  • Botelho, S.C., Drews, P., Oliveira, G., & da Silva Figueiredo, M. (2009). Visual odometry and mapping for underwater autonomous vehicles. In Proceedings of the 2009 6th Latin American robotics symposium (p. 1–6).

  • Corke, P., Detweiler, C., Dunbabin, M., Hamilton, M., Rus, D., & Vasilescu, I. (2007). Experiments with underwater robot localization and tracking. In Proceedings of the 2007 IEEE international conference on robotics and automation (pp. 4556–4561).

  • Durrant-Whyte, H. F., & Bailey, T. (2006). Simultaneous localisation and mapping (SLAM): Part I the essential algorithms. IEEE Robotics and Automation Magazine, 13(2), 99–110.

  • Eustice, R., Pizarro, O., & Singh, H. (2008). Visually augmented navigation for autonomous underwater vehicles. IEEE Journal of Oceanic Engineering, 33(2), 103–122.

    Article  Google Scholar 

  • Fischler, M. A., & Bolles, R. C. (1981). Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 24(6), 381–395.

    Article  MathSciNet  Google Scholar 

  • Fraundorfer, F., & Scaramuzza, D. (2012). Visual odometry: Part II: Matching, robustness, optimization, and applications. IEEE Robotics and Automation Magazine, 19(2), 78–90.

    Article  Google Scholar 

  • Garro, V., Crosilla, F., & Fusiello, A. (2012). Solving the PnP problem with anisotropic orthogonal procrustes analysis. In Second joint 3DIM/3DPVT conference: 3d imaging, processing, visualization and transmission: modeling (pp. 262–269).

  • Geiger, A., Ziegler, J., & Stiller, C. (2011). StereoScan: Dense 3D reconstruction in real-time. In IEEE Intelligent Vehicles Symposium.

  • Geiger, A., Lenz, P., & Urtasun, R. (2012). Are we ready for autonomous driving? The KITTI vision benchmark suite. In Proceedings of computer vision and pattern recognition, http://www.cvlibs.net/datasets/kitti/eval_odometry.php.

  • Hartley, R., & Sturm, P. (1997). Triangulation. Computer Vision and Image Understanding, 68(2), 146–157.

    Article  Google Scholar 

  • Hartley, R. I., & Zisserman, A. (2004). Multiple view geometry in computer vision (2nd ed.). Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Hildebrandt, M., & Kirchner, F. (2010). IMU-aided stereo visual odometry for ground-tracking AUV applications. In OCEANS 2010 IEEE—Sydney (pp. 1–8).

  • Horn, B. K. P. (1987). Closed-form solution of absolute orientation using unit quaternions. Journal of the Optical Society of America A, 4(4), 629–642.

    Article  Google Scholar 

  • Kim, A., & Eustice, R. (2009). Pose-graph visual SLAM with geometric model selection for autonomous underwater ship hull inspection. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (pp. 1559–1565).

  • Kim, A., & Eustice, R. M. (2013). Real-time visual SLAM for autonomous underwater hull inspection using visual saliency. IEEE Transactions on Robotics, 29(3), 719–733.

    Article  Google Scholar 

  • Lee, G.H., Fraundorfer, F., & Pollefeys, M. (2011). RS-SLAM: RANSAC sampling for visual FastSLAM. In Proceedings of IEEE/RSJ international conference on intelligent robots and systems (pp. 1655–1660).

  • Lowe, D. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2), 91–110.

    Article  Google Scholar 

  • Mallios, A., Ridao, P., Ribas, D., & Hernández, E. (2014). Scan matching SLAM in underwater environments. Autonomous Robots, 36(3), 181–198.

  • Martull, S., Martorell, M.P., & Fukui, K. (2012). Realistic CG stereo image dataset with ground truth disparity maps. In Proceedings of ICPR2012 workshop TrakMark2012 (pp. 40–42), http://www.cvlab.cs.tsukuba.ac.jp/dataset/tsukubastereo.php.

  • Montiel, J., Civera, J., & Davison, A. (2006). Unified inverse depth parametrization for monocular SLAM. In Proceedings of robotics: science and systems, IEEE Press.

  • Nistér, D., Naroditsky, O., & Bergen, J.R. (2004). Visual odometry. In Proceedings of IEEE conference on computer vision and pattern recognition (pp. 652–659).

  • Paull, L., Saeedi, S., Seto, M., & Li, H. (2014). AUV navigation and localization: A review. IEEE Journal of Oceanic Engineering, 39(1), 131–149.

    Article  Google Scholar 

  • Sanfourche, M., Vittori, V., & Besnerais, G.L. (2013). eVO: A realtime embedded stereo odometry for MAV applications. In IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 2107–2114).

  • Scaramuzza, D., & Fraundorfer, F. (2011). Visual odometry: Part I—the first 30 years and fundamentals. IEEE Robotics and Automation Magazine, 18(4), 8092.

    Article  Google Scholar 

  • Shi, J., & Tomasi, C. (1994). Good features to track. In IEEE conference on computer vision and pattern recognition 1994 (CVPR’94) (pp. 593–600).

  • Strasdat, H., Montiel, J.M.M., & Davison, A.J. (2010). Scale drift-aware large scale monocular SLAM. In Proceedings of robotics: science and systems.

  • Whitcomb, L., Yoerger, D., Singh, H., & Howland, J. (1999). Advances in underwater robot vehicles for deep ocean exploration: Navigation, control, and survey operations. In Proceedings of the 9th international symposium on robotics research (pp. 346–353).

  • Wirth, S., Negre Carrasco, P., & Codina, G. (2013). Visual odometry for autonomous underwater vehicles. In Proceedings of 2013 MTS/IEEE OCEANS (pp. 1–6).

Download references

Acknowledgments

This work has been supported by the European ARROWS project, founded by the European Union’s Seventh Framework Programme for Research technological development and demonstration, under grant agreement no. 308724.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Fanfani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bellavia, F., Fanfani, M. & Colombo, C. Selective visual odometry for accurate AUV localization. Auton Robot 41, 133–143 (2017). https://doi.org/10.1007/s10514-015-9541-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-015-9541-1

Keywords

Navigation