Advertisement

Autonomous Robots

, Volume 41, Issue 2, pp 437–452 | Cite as

Spinal joint compliance and actuation in a simulated bounding quadruped robot

  • Soha Pouya
  • Mohammad Khodabakhsh
  • Alexander Spröwitz
  • Auke Ijspeert
Article

Abstract

Spine movements play an important role in quadrupedal locomotion, yet their potential benefits in locomotion of quadruped robots have not been systematically explored. In this work, we investigate the role of spinal joint actuation and compliance on the bounding performance of a simulated compliant quadruped robot. We designed and conducted extensive simulation experiments, to compare the benefits of different spine designs, and in particular, we compared the bounding performance when (i) using actuated versus passive spinal joint, (ii) changing the stiffness of the spinal joint and (iii) altering joint actuation profiles. We used a detailed rigid body dynamics modeling to capture the main dynamical features of the robot. We applied a set of analytic tools to evaluate the bounding gait characteristics including periodicity, stability, and cost of transport. A stochastic optimization method called particle swarm optimization was implemented to perform a global search over the parameter space, and extract a pool of diverse gait solutions. Our results show improvements in bounding speed for decreasing spine stiffness, both in the passive and the actuated case. The results also suggests that for the passive spine configuration at low stiffness values, periodic solutions are hard to realize. Overall, passive spine solutions were more energy efficient and self-stable than actuated ones, but they basically exist in limited regions of parameter space. Applying more complex joint control profiles reduced the dependency of the robot’s speed to its chosen spine stiffness. In average, active spine control decreased energy efficiency and self-stability behavior, in comparison to a passive compliant spine setup.

Keywords

Bio-inspired robotics Quadruped robots Locomotion control Dynamics modeling and simulation Robot morphology Spinal joint 

Notes

Acknowledgments

This project has received funding from the EPFL and the European Community’s Seventh Framework Programme FP7/2007-2013 - Future Emerging Technologies, Embodied Intelligence, under the grant agreement number 231 688 (Locomorph).

Supplementary material

10514_2015_9540_MOESM1_ESM.avi (2.4 mb)
Supplementary material 1 (avi 2434 KB)
10514_2015_9540_MOESM2_ESM.m4v (121 kb)
Supplementary material 2 (m4v 121 KB)

References

  1. Alexander, R. M. (1977). Storage of elastic strain energy in muscle and other tissues. Nature, 265, 114–117.CrossRefGoogle Scholar
  2. Alexander, R. M. (1984). Elastic energy stores in running vertebrates. American Zoologist, 24(1), 85–94.CrossRefGoogle Scholar
  3. Alexander, R. M., Dimery, N. J., & Ker, R. F. (1985). Elastic structures in the back and their role in galloping in some mammals. Journal of Zoology, 207(4), 467–482.CrossRefGoogle Scholar
  4. Andrews, B., Miller, B., & Schmitt, J. (2011). Running over unknown rough terrain with a one-legged planar robot. Bioinspiration & Biomimetics, 6(2), 026009.CrossRefGoogle Scholar
  5. Blickhan, R. (1989). The spring-mass model for running and hopping. Journal of Biomechanics, 22(11), 1217–1227.CrossRefGoogle Scholar
  6. Blickhan, R., & Full, R. (1993). Similarity in multilegged locomotion: Bouncing like a monopode. Journal of Comparative Physiology A, 173(5), 509–517.CrossRefGoogle Scholar
  7. Brown, B., & Zeglin, G. (1998). The bow leg hopping robot. In IEEE International conference on robotics and automation (vol. 1).Google Scholar
  8. Buehler, M., Battaglia, R., Cocosco, A., Hawker, G., Sarkis, J., & Yamazaki, K. (1998). SCOUT: A simple quadruped that walks, climbs, and runs. In IEEE international conference on robotics and automation (Vol. 2).Google Scholar
  9. Cao, Q., & Poulakakis, I. (2012). Passive quadrupedal bounding with a segmented flexible torso. In IEEE/RSJ international conference on intelligent robots and systems.Google Scholar
  10. Clerc, M., & Kennedy, J. (2002). The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation, 6(1), 58–73.CrossRefGoogle Scholar
  11. Culha, U., & Saranli, U. (2011). Quadrupedal bounding with an actuated spinal joint. In IEEE international conference on robotics and automation.Google Scholar
  12. Delcomyn, F. (1980). Neural basis of rhythmic behavior in animals. Science, 210(4469), 492–498.CrossRefGoogle Scholar
  13. Estremera, J., & Waldron, K. (2008). Thrust control, stabilization and energetics of a quadruped running robot. International Journal of Robotics Research, 27, 1135–1151.CrossRefGoogle Scholar
  14. Faraji, S., Pouya, S., Moeckel, R., & Ijspeert, A. (2013). Compliant and adaptive control of a planar monopod hopper in rough terrain. In IEEE international conference on robotics and automation.Google Scholar
  15. Folkertsma, G. A., Kim, S., & Stramigioli, S. (2012). Parallel stiffness in a bounding quadruped with flexible spine. In IEEE/RSJ international conference intelligent robots and systems.Google Scholar
  16. Full, R. J., & Koditschek, D. E. (1999). Templates and anchors: Neuromechanical hypotheses of legged locomotion on land. Journal of Experimental Biology, 202(23), 3325–3332.Google Scholar
  17. Guckenheimer, J., & Holmes, P. (1983). Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. New York: Springer.CrossRefMATHGoogle Scholar
  18. Hurmuzlu, Y., & Basdogan, C. (1994). On the measurement of dynamic stability of human locomotion. Journal of Biomechanical Engineering, 116, 30–36.CrossRefGoogle Scholar
  19. Iida, F., Gomez, G., & Pfeifer, R. (2005). Exploiting body dynamics for controlling a running quadruped robot. In International conference on advanced robotics.Google Scholar
  20. Ijspeert, A. J. (2008). Central pattern generators for locomotion control in animals and robots: A review. Neural Networks, 21(4), 642–653.CrossRefGoogle Scholar
  21. Jung, Ch. (1986). Poincaré map for scattering states. Journal of physics A, 19(8), 1345.MathSciNetCrossRefMATHGoogle Scholar
  22. Khoramshahi, M., Spröwitz, A., Tuleu, A., Ahmadabadi, M., & Ijspeert, A. (2013). Benefits of an active spine supported bounding locomotion with a small compliant quadruped robot. In IEEE international conference on robotics and automation.Google Scholar
  23. Kimura, H., Fukuoka, Y., & Cohen, A. (2004). Biologically inspired adaptive dynamic walking of a quadruped robot. In International symposium on adaptive motion of animals and machines (AMAM).Google Scholar
  24. Leeser, K. (1996). Locomotion experiments on a planar quadruped robot with articulated spine, Master’s thesis, MIT.Google Scholar
  25. Maufroy, C., Kimura, H., & Takase, K. (2010). Integration of posture and rhythmic motion controls in quadrupedal dynamic walking using phase modulations based on leg loading/unloading. Autonomous Robots, 28(3), 331–353.CrossRefGoogle Scholar
  26. Moeckel, R., Perov, Y. N., Nguyen, A. T., Vespignani, M., Bonardi, S., Pouya, S., Sproewitz, A., Kieboom, J., Wilhelm, F., & Ijspeert, A. J. (2013). Gait optimization for roombots modular robotsMatching simulation and reality. In IEEE International Conference on Robotics and Automation.Google Scholar
  27. Owaki, D., Kano, T., Nagasawa, K., Tero, A., & Ishiguro, A. (2013). Simple robot suggests physical interlimb communication is essential for quadruped walking. Journal of The Royal Society Interface 10(78).Google Scholar
  28. Poulakakis, I., & Smith, J. A. (2005). Modeling and experiments of untethered quadrupedal running with a bounding gait: The Scout II robot. International Journal of Robotics Research, 24, 239–256.CrossRefGoogle Scholar
  29. Pouya, S., van den Kieboom, J., Spröwitz, A., & Ijspeert, A. J. (2010). Automatic gait generation in modular robots:to oscillate or to rotate; that is the question. In IEEE/RSJ international conference on intelligent robots and systems.Google Scholar
  30. Pusey, J. L., Duperret, J. M., Haynes, G. C., Knopf, R., & Koditschek, D. E. (2013). Free-standing leaping experiments with a power-autonomous elasticspined quadruped. In SPIE defense, security, and sensing, international society for optics and photonics.Google Scholar
  31. Raibert, M., Blankespoor, K., Nelson, G., & Playter, R. (2008). the BigDog Team, BigDog, the rough-terrain quaduped robot. In The international federation of automatic control. Seoul, Korea.Google Scholar
  32. Raibert, M. (1985). Legged robots that balance. Cambridge, MA: The MIT Press.MATHGoogle Scholar
  33. Raibert, M. (1991). Trotting, pacing, and bounding by a quadruped robot. Journal of Biomechanics, 23, 79–98.CrossRefGoogle Scholar
  34. Remy, D. (2011). Optimal exploitation of natural dynamics in legged locomotion, Ph.D. thesis, ETHZ, Zurich.Google Scholar
  35. Remy, C. D., Buffinton, K., & Siegwart, R. (2011). A Matlab framework for efficient gait creation. In IEEE/RSJ international conference on intelligent robots and systems.Google Scholar
  36. Revzen, S., Guckenheimer, J., & Full, R. (2009). Study of neuromechanical control of rhythmic behaviors by floquet analysis, integrative and comparative biology (Vol. 49). Oxford: oxford University Press.Google Scholar
  37. Roos, F., Johansson, H., & Wikander, J. (2006). Optimal selection of motor and gearhead in mechatronic applications. Mechatronics, 16(1), 63–72.CrossRefGoogle Scholar
  38. Siciliano, B., Sciavicco, L., Villani, L., & Oriolo, G. (2008). Robotics modelling, planning and control. New York: Springer.Google Scholar
  39. Spröwitz, A., Badri, E., Khoramshahi, M., Tuleu, A., & Ijspeert, A. (2013). Use your spine! effect of active spine movements on horizontal impulse and cost of transport in a bounding, quadruped robot. In Proceedings of dynamic walking.Google Scholar
  40. Spröwitz, A., Moeckel, R., Maye, J., & Ijspeert, A. J. (2008). Learning to move in modular robots using central pattern generators and online optimization. The International Journal of Robotics Research, 27(3–4), 423–443.CrossRefGoogle Scholar
  41. Spröwitz, A., Tuleu, A., Vespignani, M., Ajallooeian, M., Badri, E., & Ijspeert, A. J. (2013). Towards dynamic trot gait locomotion: Design, control, and experiments with Cheetah-cub, a compliant quadruped robot. The International Journal of Robotics Research, 32(8), 932–950.CrossRefGoogle Scholar
  42. Tsujita, K., & Miki, K. (2011). A study on trunk stiffness and gait stability in quadrupedal locomotion using musculoskeletal robot. In International conference on advanced robotics (ICAR) (pp. 316–321).Google Scholar
  43. Williams, S. B., Tan, H., Usherwood, J. R., & Wilson, A. M. (2009). Pitch then power: Limitations to acceleration in quadrupeds. Biology Letters, 5(5), rsbl20090360.CrossRefGoogle Scholar
  44. Zhao, Q., Nakajima, K., Sumioka, H., Yu, X., & Pfeifer, R. (2012). Embodiment enables the spinal engine in quadruped robot locomotion. In IEEE/RSJ International conference on intelligent robots and systems.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Soha Pouya
    • 1
  • Mohammad Khodabakhsh
    • 1
  • Alexander Spröwitz
    • 1
  • Auke Ijspeert
    • 1
  1. 1.Biorobotics Laboratory, Institute of BioengineeringEcole Polytechnique Federale de Lausanne (EPFL)LausanneSwitzerland

Personalised recommendations