Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Resolution-adaptive risk-aware trajectory planning for surface vehicles operating in congested civilian traffic

Abstract

The growing variety and complexity of marine research and application oriented tasks requires unmanned surface vehicles (USVs) to operate fully autonomously over long time horizons even in environments with significant civilian traffic. In order to address this challenge, we have developed a lattice-based 5D trajectory planner for USVs. The planner estimates collision risk and reasons about the availability of contingency maneuvers to counteract unpredictable behaviors of civilian vessels. The planner also incorporates avoidance behaviors of the vessels into the search for a dynamically feasible trajectory to minimize collision risk. In order to be computationally efficient, it dynamically scales the control action primitives of a trajectory based on the distribution and concentration of civilian vessels while preserving the dynamical feasibility of the primitives. We present a novel congestion metric to compare the complexity of different scenarios when evaluating the performance of the planner. Our results demonstrate that the basic version of the risk and contingency-aware planner (RCAP) significantly decreases the number of collisions compared to a baseline, velocity obstacles based planner, especially in complex scenarios with a high number of civilian vessels. The adaptive version of the planner (A-RCAP) improves the computational performance of RCAP by 500 %. This leads to a high replanning rate, which allows shorter traversal distances and smaller arrival times, while ensuring comparable incidence of collisions.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Alonso-Mora, J., Breitenmoser, A., Beardsley, P., & Siegwart, R. (2012). Reciprocal collision avoidance for multiple car-like robots. In IEEE international conference on robotics and automation (ICRA) (pp. 360–366). IEEE.

  2. Alonso-Mora, J., Breitenmoser, A., Rufli, M., Beardsley, P., & Siegwart, R. (2013). Optimal reciprocal collision avoidance for multiple non-holonomic robots. Berlin: Springer.

  3. Althoff, D., Kuffner, J. J., Wollherr, D., & Buss, M. (2012). Safety assessment of robot trajectories for navigation in uncertain and dynamic environments. Autonomous Robots, 32(3), 285–302.

  4. Aoude, G. S., Luders, B. D., Joseph, J. M., Roy, N., & How, J. P. (2013). Probabilistically safe motion planning to avoid dynamic obstacles with uncertain motion patterns. Autonomous Robots, 35(1), 51–76.

  5. Bareiss, D., & Van den Berg, J. (2013). Reciprocal collision avoidance for robots with linear dynamics using LQR-obstacles. In IEEE international conference on robotics and automation (ICRA) (pp. 3847–3853). IEEE.

  6. Barraquand, J., & Latombe, J. C. (1993). Nonholonomic multibody mobile robots: Controllability and motion planning in the presence of obstacles. Algorithmica, 10(2–4), 121–155.

  7. Bautin, A., Martinez-Gomez, L., & Fraichard, T. (2010). Inevitable collision states: A probabilistic perspective. In IEEE international conference on robotics and automation (ICRA) (pp. 4022–4027). IEEE.

  8. Benjamin, M. R., & Curcio, J. A. (2004). COLREGs-based navigation of autonomous marine vehicles. In Proceedings of the autonomous underwater vehicles.

  9. Benjamin, M. R., Curcio, J. A., Leonard, J. J., & Newman, P. M. (2006). Navigation of unmanned marine vehicles in accordance with the rules of the road. In Proceedings of the IEEE international conference on robotics and automation (ICRA 2006) (pp. 3581–3587). IEEE.

  10. Benjamin, M. R., Leonard, J. J., Curcio, J. A., & Newman, P. M. (2006). A method for protocol-based collision avoidance between autonomous marine surface craft. Journal of Field Robotics, 23(5), 333–346.

  11. Borenstein, J., & Koren, Y. (1991). The vector field histogram-fast obstacle avoidance for mobile robots. IEEE Transactions on Robotics and Automation, 7(3), 278–288.

  12. Campbell, S., Naeem, W., & Irwin, G. (2012). A review on improving the autonomy of unmanned surface vehicles through intelligent collision avoidance manoeuvres. Annual Reviews in Control, 36(2), 267–283.

  13. Chan, N., Kuffner, J., & Zucker, M. (2008). Improved motion planning speed and safety using regions of inevitable collision. In 17th CISM-IFToMM symposium on robot design, dynamics, and control (pp. 103–114).

  14. Cohen, B. J., Subramanian, G., Chitta, S., & Likhachev, M. (2011). Planning for manipulation with adaptive motion primitives. In IEEE international conference on robotics and automation (ICRA) (pp. 5478–5485). IEEE.

  15. Colito, J. (2007). Autonomous mission planning and execution for unmanned surface vehicles in compliance with the marine rules of the road. Ph.D. thesis, University of Washington.

  16. Corfield, S., & Young, J. (2006). Unmanned surface vehicles-game changing technology for naval operations. IEEE Control Enginerring Series, 69, 311.

  17. de Lamadrid, J. G. (1994). Avoidance of obstacles with unknown trajectories: Locally optimal paths and periodic sensor readings. The International Journal of Robotics Research, 13(6), 496–507.

  18. Dolgov, D., Thrun, S., Montemerlo, M., & Diebel, J. (2010). Path planning for autonomous vehicles in unknown semi-structured environments. The International Journal of Robotics Research, 29(5), 485–501.

  19. Faverjon, B., & Tournassoud, P. (1987). A local based approach for path planning of manipulators with a high number of degrees of freedom. In Proceedings. of the IEEE international conference on robotics and automation (Vol. 4, pp. 1152–1159). IEEE.

  20. Fiorini, P., & Shiller, Z. (1998). Motion planning in dynamic environments using velocity obstacles. The International Journal of Robotics Research, 17(7), 760–772.

  21. Foka, A. F., & Trahanias, P. E. (2002). Predictive autonomous robot navigation. In International conference on intelligent robots and systems (IEEE/RSJ) (Vol. 1, pp. 490–495). IEEE.

  22. Fossen, T. (2011). Handbook of marine craft hydrodynamics and motion control. Hoboken: Wiley.

  23. Fox, D., Burgard, W., & Thrun, S. (1997). The dynamic window approach to collision avoidance. IEEE Robotics & Automation Magazine, 4(1), 23–33.

  24. Fraichard, T. (2007). A short paper about motion safety. In IEEE international conference on robotics and automation (pp. 1140–1145). IEEE.

  25. Fraichard, T., & Asama, H. (2004). Inevitable collision states—A step towards safer robots? Advanced Robotics, 18(10), 1001–1024.

  26. Fulgenzi, C., Spalanzani, A., & Laugier, C. (2007). Dynamic obstacle avoidance in uncertain environment combining PVOs and occupancy grid. In IEEE international conference on robotics and automation (pp. 1610–1616). IEEE.

  27. Fulgenzi, C., Spalanzani, A., & Laugier, C. (2009). Probabilistic motion planning among moving obstacles following typical motion patterns. In IEEE/RSJ international conference on intelligent robots and systems (IROS 2009) (pp. 4027–4033). IEEE.

  28. Fulgenzi, C., Spalanzani, A., Laugier, C., & Tay, C. (2010). Risk based motion planning and navigation in uncertain dynamic environment. Research report. https://hal.inria.fr/inria-00526601.

  29. Gochev, K., Cohen, B., Butzke, J., Safonova, A., & Likhachev, M. (2011). Path planning with adaptive dimensionality. In Fourth annual symposium on combinatorial search.

  30. Gochev, K., Safonova, A., & Likhachev, M. (2012). Planning with adaptive dimensionality for mobile manipulation. In IEEE international conference on robotics and automation (ICRA) (pp. 2944–2951). IEEE.

  31. Gochev, K., Safonova, A., & Likhachev, M. (2013). Incremental planning with adaptive dimensionality. In Twenty-third international conference on automated planning and scheduling.

  32. Greytak, M., & Hover, F. (2009). Motion planning with an analytic risk cost for holonomic vehicles. In IEEE conference on decision and control (CDC/CCC’09) (pp. 5655–5660). IEEE.

  33. Hart, P. E., Nilsson, N. J., & Raphael, B. (1968). A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics, 4(2), 100–107.

  34. Howard, T. M., Green, C. J., Kelly, A., & Ferguson, D. (2008). State space sampling of feasible motions for high-performance mobile robot navigation in complex environments. Journal of Field Robotics, 25(6–7), 325–345.

  35. Hsu, D., Kindel, R., Latombe, J. C., & Rock, S. (2002). Randomized kinodynamic motion planning with moving obstacles. The International Journal of Robotics Research, 21(3), 233–255.

  36. Huntsberger, T., & Woodward, G. (2011). Intelligent autonomy for unmanned surface and underwater vehicles. In OCEANS 2011 (pp. 1–10). IEEE.

  37. Kanehiro, F., Lamiraux, F., Kanoun, O., Yoshida, E., & Laumond, J. P. (2008). A local collision avoidance method for non-strictly convex polyhedra. In Proceedings of the robotics: Science and systems IV.

  38. Karaman, S., & Frazzoli, E. (2010). Incremental sampling-based algorithms for optimal motion planning. In Proceedings of robotics: science and systems (RSS). Zaragoza, Spain.

  39. Kelly, A., Stentz, A., Amidi, O., Bode, M., Bradley, D., Diaz-Calderon, A., et al. (2006). Toward reliable off road autonomous vehicles operating in challenging environments. The International Journal of Robotics Research, 25(5–6), 449–483.

  40. Khatib, O. (1986). Real-time obstacle avoidance for manipulators and mobile robots. The International Journal of Robotics Research, 5(1), 90–98.

  41. Kluge, B., & Prassler, E. (2004). Reflective navigation: Individual behaviors and group behaviors. In IEEE international conference on robotics and automation (pp. 4172–4177).

  42. Koenig, S., & Likhachev, M. (2002). D* lite. In AAAI/IAAI (pp. 476–483).

  43. Kushleyev, A., & Likhachev, M. (2009). Time-bounded lattice for efficient planning in dynamic environments. In IEEE international conference on robotics and automation (ICRA ’09) (pp. 1662–1668). IEEE.

  44. Kuwata, Y., Wolf, M., Zarzhitsky, D., & Huntsberger, T. (2014). Safe maritime autonomous navigation with COLREGs, using velocity obstacles. IEEE Journal of Oceanic Engineering, 39(1), 110–119. doi:10.1109/JOE.2013.2254214.

  45. Larson, J., Bruch, M., & Ebken, J. (2006). Autonomous navigation and obstacle avoidance for unmanned surface vehicles. In SPIE unmanned systems technology VIII (pp. 17–20), Orlando, FL.

  46. Larson, J., Bruch, M., Halterman, R., Rogers, J., & Webster, R. (2007). Advances in autonomous obstacle avoidance for unmanned surface vehicles. Technical report, DTIC document.

  47. LaValle, S. M. (2006). Planning algorithms. Cambridge: Cambridge University Press. http://planning.cs.uiuc.edu.

  48. Lee, S. M., Kwon, K. Y., & Joh, J. (2004). A fuzzy logic for autonomous navigation of marine vehicles satisfying colreg guidelines. International Journal of Control Automation and Systems, 2, 171–181.

  49. Li, Y., & Xiao, J. (2009). On-line planning of nonholonomic trajectories in crowded and geometrically unknown environments. In IEEE international conference on robotics and automation (ICRA ’09) (pp. 3230–3236). IEEE.

  50. Likhachev, M., & Ferguson, D. (2009). Planning long dynamically feasible maneuvers for autonomous vehicles. The International Journal of Robotics Research, 28(8), 933–945.

  51. Likhachev, M., Ferguson, D. I., Gordon, G. J., Stentz, A., & Thrun, S. (2005). Anytime dynamic A*: An anytime, replanning algorithm. In ICAPS (pp. 262–271).

  52. Lindemann, S. R., & LaValle, S. M. (2006). Multiresolution approach for motion planning under differential constraints. In Proceedings the IEEE international conference on robotics and automation (ICRA 2006) (pp. 139–144). IEEE.

  53. Loe, O. (2007). Collision avoidance concepts for marine surface craft. Trondheim, 19, 111.

  54. Manley, J. E. (2008). Unmanned surface vehicles, 15 years of development. In OCEANS 2008 (pp. 1–4). IEEE.

  55. Martinez-Gomez, L., & Fraichard, T. (2009). Collision avoidance in dynamic environments: an ICS-based solution and its comparative evaluation. In IEEE international conference on robotics and automation (ICRA ’09) (pp. 100–105). IEEE.

  56. Naeem, W., & Irwin, G. W. (2010). An automatic collision avoidance strategy for unmanned surface vehicles. Life System Modeling and Intelligent Computing, 98, 184–191.

  57. Naeem, W., & Irwin, G. W. (2011). Evasive decision making in uninhabited maritime vehicles. In Proceedings the IFAC world congress, Milan, Italy (pp. 12833–12838).

  58. Naeem, W., Irwin, G. W., & Yang, A. (2012). COLREGs-based collision avoidance strategies for unmanned surface vehicles. Mechatronics, 22(6), 669–678.

  59. Narayanan, V., Phillips, M., & Likhachev, M. (2012). Anytime safe interval path planning for dynamic environments. In IEEE/RSJ international conference on intelligent robots and systems (IROS 2012) (pp. 4708–4715). IEEE.

  60. Perera, L., Carvalho, J., & Soares, C. G. (2009). Autonomous guidance and navigation based on the COLREGs rules and regulations of collision avoidance. In Proceedings of the international workshop advanced ship design for pollution prevention (pp. 205–216).

  61. Perera, L., Carvalho, J., & Soares, C. G. (2011). Fuzzy logic based decision making system for collision avoidance of ocean navigation under critical collision conditions. Journal of Marine Science and Technology, 16(1), 84–99.

  62. Perera, L., Carvalho, J., & Soares, C. G. (2012). Intelligent ocean navigation and fuzzy-bayesian decision/action formulation. IEEE Journal of Oceanic Engineering, 37(2), 204–219.

  63. Petti, S., & Fraichard, T. (2005). Safe motion planning in dynamic environments. In IEEE/RSJ international conference on intelligent robots and systems (IROS 2005) (pp. 2210–2215). IEEE.

  64. Phillips, M., & Likhachev, M. (2011). SIPP: Safe interval path planning for dynamic environments. In IEEE international conference on robotics and automation (ICRA) (pp. 5628–5635). IEEE.

  65. Pivtoraiko, M., Knepper, R. A., & Kelly, A. (2009). Differentially constrained mobile robot motion planning in state lattices. Journal of Field Robotics, 26(3), 308–333.

  66. Rufli, M., Alonso-Mora, J., & Siegwart, R. (2013). Reciprocal collision avoidance with motion continuity constraints. IEEE Transactions on Robotics, 29(4), 899–912.

  67. Rynne, P. F., & von Ellenrieder, K. D. (2009). Unmanned autonomous sailing: Current status and future role in sustained ocean observations. Marine Technology Society Journal, 43(1), 21–30.

  68. Seder, M., Macek, K., & Petrovic, I. (2005). An integrated approach to real-time mobile robot control in partially known indoor environments. In 31st annual conference of IEEE industrial electronics society (IECON 2005) (p. 6). IEEE.

  69. Sgorbissa, A., & Zaccaria, R. (2012). Planning and obstacle avoidance in mobile robotics. Robotics and Autonomous Systems, 60(4), 628–638.

  70. Shah, B. C., Švec, P., Bertaska, I. R., Klinger, W., Sinisterra, A. J., Ellenrieder, K., Dhanak, M., et al. (2014). Trajectory planning with adaptive control primitives for autonomous surface vehicles operating in congested civilian traffic. In IEEE/RSJ international conference on intelligent robots and systems (IROS 2014).

  71. Simmons, R. (1996). The curvature-velocity method for local obstacle avoidance. In Proceedings of the IEEE international conference on robotics and automation (Vol. 4, pp. 3375–3382). IEEE.

  72. Šišlák, D., Volf, P., & Pěchouček, M. (2009a). Accelerated A* path planning. In Proceedings of the 8th international conference on autonomous agents and multiagent systems (Vol. 2, pp. 1133–1134). International Foundation for Autonomous Agents and Multiagent Systems.

  73. Šišlák, D., Volf, P., & Pechoucek, M. (2009b). Accelerated A* trajectory planning: Grid-based path planning comparison. In Proceedings of the 19th international conference on automated planning and scheduling (ICAPS) (pp. 74–81). Citeseer.

  74. Snape, J., Van den Berg, J., Guy, S. J., & Manocha, D. (2011). The hybrid reciprocal velocity obstacle. IEEE Transactions on Robotics, 27(4), 696–706.

  75. Stachniss, C., & Burgard, W. (2002). An integrated approach to goal-directed obstacle avoidance under dynamic constraints for dynamic environments. In IEEE/RSJ international conference on intelligent robots and systems (Vol. 1, pp. 508–513). IEEE.

  76. Steimle, E. T., & Hall, M. L. (2006). Unmanned surface vehicles as environmental monitoring and assessment tools. In OCEANS 2006 (pp. 1–5). IEEE.

  77. Stentz, A., Bares, J., Pilarski, T., & Stager, D. (2007). The crusher system for autonomous navigation. AUVSIs Unmanned Systems North America, 3.

  78. Švec, P., & Gupta, S. K. (2012). Automated synthesis of action selection policies for unmanned vehicles operating in adverse environments. Autonomous Robots, 32(2), 149–164.

  79. Švec, P., Thakur, A., Raboin, E., Shah, B. C., & Gupta, S. K. (2014). Target following with motion prediction for unmanned surface vehicle operating in cluttered environments. Autonomous Robots, 36, 383–405.

  80. Švec, P., Schwartz, M., Thakur, A., & Gupta, S. K. (2011). Trajectory planning with look-ahead for unmanned sea surface vehicles to handle environmental disturbances. In IEEE/RSJ international conference on intelligent robots and systems (IROS 2011). doi:10.1109/IROS.2010.5650385.

  81. Švec, P., Shah, B. C., Bertaska, I. R., Alvarez, J., Sinisterra, A. J., Ellenrieder, K., et al. (2013). Dynamics-aware target following for an autonomous surface vehicle operating under COLREGs in civilian traffic. In IEEE/RSJ international conference on intelligent robots and systems (IROS 2013).

  82. Tam, C., & Bucknall, R. (2010). Path-planning algorithm for ships in close-range encounters. Journal of Marine Science and Technology, 15(4), 395–407.

  83. Tan, A., Wee, W. C., & Tan, T. (2010). Criteria and rule based obstacle avoidance for usvs. In International waterside security conference (WSS) (pp. 1–6). IEEE.

  84. Teo, K., Ong, K. W., & Lai, H. C. (2009). Obstacle detection, avoidance and anti collision for MEREDITH AUV. In MTS/IEEE biloxi-marine technology for our future: Global and local challenges (OCEANS 2009) (pp. 1–10). IEEE.

  85. Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic robotics. Cambridge: MIT Press.

  86. UCG Commandant. (1999). International regulations for prevention of collisions at sea, 1972 (72 COLREGs). US Coast Guard, US Department of Transportation, COMMANDANT INSTRUCTION M 16672.

  87. Van Den Berg, J., Guy, S. J., Lin, M., & Manocha, D. (2011). Reciprocal n-body collision avoidance. In C. Pradalier, R. Siegwart, & G. Hirzinger (Eds.), Robotics research. Springer tracts in advanced robotics (Vol. 70, pp. 3–19). Berlin, Heidelberg: Springer.

  88. Van Den Berg, J., Lin, M., & Manocha, D. (2008). Reciprocal velocity obstacles for real-time multi-agent navigation. In IEEE international conference on robotics and automation (ICRA 2008) (pp. 1928–1935). IEEE.

  89. Van Den Berg, J., Wilkie, D., Guy, S. J., Niethammer, M., & Manocha, D. (2012). Lqg-obstacles: Feedback control with collision avoidance for mobile robots with motion and sensing uncertainty. In IEEE international conference on robotics and automation (ICRA) (pp. 346–353). IEEE.

  90. Vasquez, D., Large, F., Fraichard, T., & Laugier, C. (2004). High-speed autonomous navigation with motion prediction for unknown moving obstacles. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS 2004) (Vol. 1, pp. 82–87). IEEE.

  91. Xu, B., Kurdila, A., & Stilwell, D. J. (2009). A hybrid receding horizon control method for path planning in uncertain environments. In IEEE/RSJ international conference on intelligent robots and systems (IROS 2009) (pp. 4887–4892). IEEE.

  92. Xue, Y., Lee, B., & Han, D. (2009). Automatic collision avoidance of ships. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 223(1), 33–46.

  93. Yap, P., Burch, N., Holte, R. C., & Schaeffer, J. (2011a) Block A*: Database-driven search with applications in any-angle path-planning. In AAAI.

  94. Yap, P. K. Y., Burch, N., Holte, R. C., & Schaeffer, J. (2011b) Any-angle path planning for computer games. In AIIDE.

  95. Zucker, M., Kuffner, J., & Branicky, M. (2007). Multipartite RRTS for rapid replanning in dynamic environments. In IEEE international conference on robotics and automation (pp. 1603–1609). IEEE.

Download references

Acknowledgments

This work was supported by the Office of Naval Research under Grants N000141110423 and N000141210502 and National Science Foundation under grants IIS1526487 and IIS1526016. Opinions expressed in this paper are those of the authors and do not necessarily reflect opinions of the sponsors.

Author information

Correspondence to Satyandra K. Gupta.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shah, B.C., Švec, P., Bertaska, I.R. et al. Resolution-adaptive risk-aware trajectory planning for surface vehicles operating in congested civilian traffic. Auton Robot 40, 1139–1163 (2016). https://doi.org/10.1007/s10514-015-9529-x

Download citation

Keywords

  • Lattice-based trajectory planning
  • Resolution adaptive search
  • Contingency planning
  • Unmanned surface vehicle
  • COLREGs
  • Scenario congestion