Autonomous Robots

, Volume 40, Issue 8, pp 1403–1417 | Cite as

Global image signature for visual loop-closure detection

  • Pep Lluis Negre Carrasco
  • Francisco Bonin-Font
  • Gabriel Oliver-Codina
Article

Abstract

This work details a new method for loop-closure detection based on using multiple orthogonal projections to generate a global signature for each image of a video sequence. The new multi-projection function permits the detection of images corresponding to the same scene, but taken from different points of view. The signature generation process preserves enough information for robust loop-closure detection, although it transforms each image to a simple and compact representation. Thanks to these characteristics, a real-time operation is possible, even for long sequences with thousands of images. In addition, it has proved to work on very different scenarios without the need to change the parameters or to perform an onffline training stage, which makes it very independent on the environment and camera configuration. Results of an extensive set of experiments of the algorithm on several datasets, both indoors and outdoors and including underwater scenarios, are presented. Furthermore, an implementation, named HALOC, is available at a public repository as a C++ library for its use under the BSD license.

Keywords

Loop-closure detection Global image descriptor Autonomous robots Visual localization 

References

  1. Angeli, A., Filliat, D., Doncieux, S., & Meyer, J. A. (2008). Fast and incremental method for loop-closure detection using bags of visual words. IEEE Transactions on Robotics, 24(5), 1027–1037.CrossRefGoogle Scholar
  2. Arandjelovic, R., & Zisserman, A. (2013). All about vlad. In 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 1578–1585). IEEE, Piscataway.Google Scholar
  3. Bay, H., Tuytelaars, T., & Van Gool, L. (2006). Surf: Speeded up robust features. In Proceedings of the European Conference on Computer Vision (ECCV) (pp. 404–417). Springer, Berlin.Google Scholar
  4. Calonder, M., Lepetit, V., Strecha, C., & Fua, P. (2010). Brief: Binary robust independent elementary features. In Proceedings of IEEE European Conference on Computer Vision (ECCV).Google Scholar
  5. Clemente, L. A., Davison, A. J., Reid, I. D., Neira, J., & Tardós, J. D. (2007). Mapping large loops with a single hand-held camera. In Proceedings of Robotics: Science and Systems.Google Scholar
  6. Cummins, M., & Newman, P. (2008). Accelerated appearance-only slam. In IEEE international conference on Robotics and automation, 2008 (ICRA 2008) (pp. 1828–1833). IEEE, Piscataway.Google Scholar
  7. Cummins, M., & Newman, P. (2008). Fab-map: Probabilistic localization and mapping in the space of appearance. The International Journal of Robotics Research, 27(6), 647–665.CrossRefGoogle Scholar
  8. Cummins, M. & Newman, P. (2008) The oxford mobile robotics group datasets, 2008. http://www.robots.ox.ac.uk/~mobile/IJRR_2008_Dataset/data.html.
  9. Cummins, M., & Newman, P. (2010) Fab-map: Appearance-based place recognition and mapping using a learned visual vocabulary model. In Proceedings of the International Conference on Machine Learning Google Scholar
  10. Diephuis, M., Voloshynovskiy, S., Koval, O., & Beekhof, F. (2011) Statistical analysis of binarized sift descriptors. In 7th International Symposium on Image and Signal Processing and Analysis (ISPA) (pp. 460–465). IEEE, Piscataway.Google Scholar
  11. Durrant-Whyte, H., & Bailey, T. (2006). Simultaneous localization and mapping: Part i. IEEE Robotics Automation Magazine, 13(2), 99–110.CrossRefGoogle Scholar
  12. Filliat, D. (2007) A visual bag of words method for interactive qualitative localization and mapping. In IEEE International Conference on Robotics and Automation (pp. 3921–3926). IEEE, Piscataway.Google Scholar
  13. Garcia-Fidalgo, E., & Ortiz, A. (2014). Vision-based topological mapping and localization by means of local invariant features and map refinement. Robotica, 33, 1446–1470.CrossRefGoogle Scholar
  14. Garcia-Fidalgo, E., & Ortiz, A. (2015). Vision-based topological mapping and localization methods: A survey. Robotics and Autonomous Systems, 64, 1–20.CrossRefGoogle Scholar
  15. Geiger, A., Ziegler, J., & Stiller, C. (2011). Stereoscan: Dense 3d reconstruction in real-time. In IEEE Intelligent Vehicles Symposium, Baden-Baden, June 2011.Google Scholar
  16. Gionis, A., Indyk, P., Motwani, R., et al. (1999). Similarity search in high dimensions via hashing. VLDB, 99, 518–529.Google Scholar
  17. Glover, A., Maddern, W., Warren, M., Reid, S., Milford, M., & Wyeth, G.: (2011). Openfabmap: An open source toolbox for appearance-based loop closure detection. In The International Conference on Robotics and Automation, St Paul, Minnesota, 2011. IEEE, Piscataway.Google Scholar
  18. Hartley, R., & Zisserman, A. (2003) Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge. ISBN: 0521623049.Google Scholar
  19. Jégou, H., Douze, M., Schmid, C., & Pérez, P. (2010) Aggregating local descriptors into a compact image representation. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2010 (pp. 3304–3311). IEEE, Piscataway.Google Scholar
  20. Konečnỳ, J., & Hagara, M. (2014). One-shot-learning gesture recognition using hog-hof features. The Journal of Machine Learning Research, 15(1), 2513–2532.MathSciNetGoogle Scholar
  21. Košecká, J., Li, F., & Yang, X. (2005). Global localization and relative positioning based on scale-invariant keypoints. Robotics and Autonomous Systems, 52(1), 27–38.CrossRefGoogle Scholar
  22. Lin, S., Ozsu, M. T., Oria, V., & Ng, R. (2001). An extendible hash for multi-precision similarity querying of image databases. In Proceedings of International Conference of Very Large Data Bases (VLDB), 1, 221–230.Google Scholar
  23. Liu, M., & Siegwart, R. (2012). Dp-fact: Towards topological mapping and scene recognition with color for omnidirectional cameras. In Proceedings of IEEE International Conference on Robotics and Automation (ICRA) (pp. 3503–3508), May 2012.Google Scholar
  24. Liu, M., & Siegwart, R. (2014). Topological mapping and scene recognition with lightweight color descriptors for an omnidirectional camera. IEEE Transaction on Robotics, 30(2), 310–324.CrossRefGoogle Scholar
  25. Liu, Y., & Zhang, H. (2012). Visual loop closure detection with a compact image descriptor. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 1051–1056).Google Scholar
  26. Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2), 91–110.CrossRefGoogle Scholar
  27. Mıhçak, M. K., & Venkatesan, R. (2002) New iterative geometric methods for robust perceptual image hashing. In Security and privacy in digital rights management (pp. 13–21). Springer, Berlin.Google Scholar
  28. Milford, M., & Wyeth, G. (2012). Visual route-based navigation for sunny summer days and stormy winter nights. In The International Conference on Robotics and Automation Google Scholar
  29. Monga, V., & Evans, B. L. (2006). Perceptual image hashing via feature points: Performance evaluation and tradeoffs. IEEE Transactions on Image Processing, 15(11), 3453–3466.CrossRefGoogle Scholar
  30. Negre, P. L., & Bonin-Font, F. (2014) libhaloc. Retrieved May 2014 from, https://github.com/srv/libhaloc.
  31. Oliva, A., & Torralba, A. (2001). Modelling the shape of the scene: A holistic representation of the spatial envelope. International Journal on Computer Vision, 42(3), 145–175.CrossRefMATHGoogle Scholar
  32. Roy, S., Zhu, X., Yuan, J., & Chang, E. C. (2007). On preserving robustness-false alarm tradeoff in media hashing. In SPIE Proceedings on Visual Communications and Image Processing, vol. 6508.Google Scholar
  33. Schaefer, G., & Stich, M. (2004). Ucid—an uncompressed colour image database. In Proceedings of SPIE, Storage and Retrieval Methods and Applications for Multimedia (pp. 472–480), San Jose.Google Scholar
  34. Shahbazi, H., & Zhang, H. (2011). Application of locality sensitive hashing to realtime loop closure detection. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems(IROS) (pp. 1228–1233), San Francisco.Google Scholar
  35. Smith, J. R., & Chang, S. (1997). Visually searching the web for content. IEEE Multimedia, 4(3), 12–20.CrossRefGoogle Scholar
  36. Sünderhauf, N., & Protzel, P. (2011). Brief-gist - closing the loop by simple means. In Proceedings of IEEE International Conference on Intelligent Robots and Systems (IROS).Google Scholar
  37. Sunderhauf, N., & Protzel, P. (2011). Brief-gist-closing the loop by simple means. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 1234–1241). IEEE, Piscataway.Google Scholar
  38. Swaminathan, A., Mao, Y., & Wu, M. (2006). Robust and secure image hashing. IEEE Transactions on Information Forensics and Security, 1(2), 215–230.CrossRefGoogle Scholar
  39. Ulrich, I., & Nourbakhsh, I. (2000). Appearance-based place recognition for topological localization. In Proceedings of IEEE International Conference on Robotics and Automation, 2000 (ICRA’00) (vol. 2, pp. 1023–1029). IEEE, Piscataway.Google Scholar
  40. Vedaldi, A., & Fulkerson, B. (2008). VLFeat: An open and portable library of computer vision algorithms. http://www.vlfeat.org/.
  41. Venkatesan, R., Koon, S. M., Jakubowski, M. H., & Moulin, P. (2000) Robust image hashing. In Proceedings of International Conference on Image Processing, 2000 (vol. 3, pp. 664–666). IEEE, Piscataway.Google Scholar
  42. Wan, J., Ruan, Q., Li, W., An, G., & Zhao, R. (2014). 3d smosift: Three-dimensional sparse motion scale invariant feature transform for activity recognition from rgb-d videos. Journal of Electronic Imaging, 23(2), 023017–023017.CrossRefGoogle Scholar
  43. Wan, J., Ruan, Q., Li, W., & Deng, S. (2013). One-shot learning gesture recognition from RGB-D data using bag of features. The Journal of Machine Learning Research, 14(1), 2549–2582.Google Scholar
  44. Williams, B., Cummins, M., Neira, J., Newman, P., Reid, I., & Tardós, J. (2008). An image-to-map loop closing method for monocular slam. In IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008 (IROS 2008) (pp. 2053–2059). IEEE, Piscataway.Google Scholar
  45. Williams, B., Cummins, M., Neira, J., Newman, P., Reid, I., & Tardós, J. (2009). A comparison of loop closing techniques in monocular slam. Robotics and Autonomous Systems, 57(12), 1188–1197.CrossRefGoogle Scholar
  46. Wirth, S., Negre Carrasco, P. L., & Oliver, G. (2013). Visual odometry for autonomous underwater vehicles. In Proceedings of the IEEE Oceans, Bergen.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Pep Lluis Negre Carrasco
    • 1
  • Francisco Bonin-Font
    • 1
  • Gabriel Oliver-Codina
    • 1
  1. 1.Systems, Robotics and Vision GroupUniversity of the Balearic Islands (UIB)PalmaSpain

Personalised recommendations