Autonomous Robots

, Volume 40, Issue 6, pp 987–1015 | Cite as

Real-time adaptive multi-robot exploration with application to underwater map construction

  • Athanasios Ch. Kapoutsis
  • Savvas A. Chatzichristofis
  • Lefteris Doitsidis
  • João Borges de Sousa
  • Jose Pinto
  • Jose Braga
  • Elias B. Kosmatopoulos
Article

Abstract

This paper deals with the problem of autonomous exploration of unknown areas using teams of Autonomous X Vehicles (AXVs)—with X standing for Aerial, Underwater or Sea-surface—where the AXVs have to autonomously navigate themselves so as to construct an accurate map of the unknown area. Such a problem can be transformed into a dynamic optimization problem which, however, is NP-complete and thus infeasible to be solved. A usual attempt is to relax this problem by employing greedy (optimal one-step-ahead) solutions which may end-up quite problematic. In this paper, we first show that optimal one-step-ahead exploration schemes that are based on a transformed optimization criterion can lead to highly efficient solutions to the multi-AXV exploration. Such a transformed optimization criterion is constructed using both theoretical analysis and experimental investigations and attempts to minimize the “disturbing” effect of deadlocks and nonlinearities to the overall exploration scheme. As, however, optimal one-step-ahead solutions to the transformed optimization criterion cannot be practically obtained using conventional optimization schemes, the second step in our approach is to combine the use of the transformed optimization criterion with the cognitive adaptive optimization (CAO): CAO is a practicably feasible computational methodology which adaptively provides an accurate approximation of the optimal one-step-ahead solutions. The combination of the transformed optimization criterion with CAO results in a multi-AXV exploration scheme which is both practically implementable and provides with quite efficient solutions as it is shown both by theoretical analysis and, most importantly, by extensive simulation experiments and real-life underwater sea-floor mapping experiments in the Leixes port, Portugal.

Keywords

Path planning for multiple mobile robot systems Trajectory generation Cognitive robotics Mapping Marine robotics 

Notes

Acknowledgments

The research leading to these results has received funding from the European Communities Seventh Framework Programme (FP7/2007-2013) under Grant Agreement No. 270180 (NOPTILUS).

References

  1. Birk, A., Pfingsthorn, M., & Bülow, H. (2012). Advances in underwater mapping and their application potential for safety, security, and rescue robotics. In IEEE International Symposium on Safety, Security, Rescue Robotics (SSRR). IEEE Press.Google Scholar
  2. Reed, S., Wood, J., & Hawort, C. (2010). The detection and disposal od ied devices within harbor regions using auvs, smart rovs and data processing/fusion technology. In 2010 international Waterside Security Conference (WSS), (pp. 1–7).Google Scholar
  3. Rodningsby, A., & Bar-Shalom, Y. (2009). Tracking of divers using probabilistic data association filter with a bubble model. IEEE Transactions on Aerospace and Electronic Systems, 45(3), 1181–1193.CrossRefGoogle Scholar
  4. Kessel, R. T., & Hollett, R. D. (2006). Underwater intruder detection sonar for protection: State of the art review and implementations. In IEEE International Conference on Technologies for Homeland Security and Safety.Google Scholar
  5. Murphy, R., Steimle, E., Hall, M., Lindemuth, D., Trejo, D., Hurlebaus, Z., Medina-Catina, Z., & Slocum, D. (2009). Robot-assisted bridge inspection after hurricane ike. In 2009 International Workshop on Safety, Security and Rescue Robotics (SSRR), (pp. 1–5).Google Scholar
  6. Roman, C., & Mather, R. (2010). Autonomous underwater vehicles as tools for deep-submergence archaeology. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the the Maritime Environment, 224, 327–340.Google Scholar
  7. DeVault, J. (2000). Robotic system for underwater inspection of bridge piers. IEEE Instrumentation and Measurement Magazine, 3(3), 32–37.CrossRefGoogle Scholar
  8. Blondel, P. (2008). A review of acoustic techniques for habitat mapping. Hydroacoustics, 11, 29–38.Google Scholar
  9. Khurshid, J., & Bing-rong, H. (2004). Military robots—a glimpse from today and tomorrow. In ICARCV 2004 8th International Conference on Control, Automation, Robotics and Vision Conference, 2004, (Vol. 1, pp. 771–777).Google Scholar
  10. Samad, A. M., Kamarulzaman, N., Hamdani, M. A., Mastor, T. A., & Hashim, K. A. (2013). The potential of unmanned aerial vehicle (uav) for civilian and mapping application. In 2013 IEEE 3rd International Conference on System Engineering and Technology (ICSET), (pp. 313–318).Google Scholar
  11. Kosmatopoulos, E. B., Papageorgiou, M., Vakouli, A., & Kouvelas, A. (2007). Adaptive fine-tuning of nonlinear control systems with application to the urban traffic control strategy tuc. IEEE Transactions on Control Systems Technology, 15(6), 991–1002.CrossRefGoogle Scholar
  12. Kosmatopoulos, E. B. (2009). An adaptive optimization scheme with satisfactory transient performance. Automatica, 45(3), 716–723.MathSciNetCrossRefMATHGoogle Scholar
  13. Kosmatopoulos, E. B., & Kouvelas, A. (2009). Large-scale nonlinear control system fine-tuning through learning. IEEE Transactions Neural Networks, 20(6), 1009–1023.CrossRefGoogle Scholar
  14. Renzaglia, A., Doitsidis, L., Martinelli, A., & Kosmatopoulos, E. B. (2012). Multi-robot three-dimensional coverage of unknown areas. The International Journal of Robotics Research, 31(6), 738–752.CrossRefGoogle Scholar
  15. Martijn, N. (2007). Rooker and Andreas Birk. Multi-robot exploration under the constraints of wireless networking. Control Engineering Practice, 15(4), 435–445.CrossRefGoogle Scholar
  16. Pfingsthorn, M., Birk, A., & Bulow, H. (2010). An efficient strategy for data exchange in multi-robot mapping under underwater communication constraints. In 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), (pp. 4886–4893). IEEE.Google Scholar
  17. Johnson, B., Hallin, N., Leidenfrost, H., O’Rourke, M., & Edwards, D.. (2009). Collaborative mapping with autonomous underwater vehicles in low-bandwidth conditions. In OCEANS 2009-EUROPE, (pp. 1–7). IEEE.Google Scholar
  18. Rajala, A., & Edwards, D. (2007). Allocating auvs for mine map development in mcm. IEEE.Google Scholar
  19. Donald, Bruce, Xavier, Patrick, Canny, John, & Reif, John. (1993). Kinodynamic motion planning. Journal of the ACM (JACM), 40(5), 1048–1066.MathSciNetCrossRefMATHGoogle Scholar
  20. Pasqualetti, Fabio, Franchi, Antonio, & Bullo, Francesco. (2012). On cooperative patrolling: Optimal trajectories, complexity analysis, and approximation algorithms. IEEE Transactions on Robotics, 28(3), 592–606.CrossRefGoogle Scholar
  21. Ny Le J., & Pappas, G. J. (2009). On trajectory optimization for active sensing in gaussian process models. In Proceedings of the 48th IEEE Conference on Decision and Control, 2009 held jointly with the 2009 28th Chinese Control Conference. CDC/CCC 2009, (pp. 6286–6292). IEEE.Google Scholar
  22. Milam, M. B., Mushambi, K., & Murray, R. M. (2000). A new computational approach to real-time trajectory generation for constrained mechanical systems. In Proceedings of the 39th IEEE Conference on Decision and Control, 2000, (Vol. 1, pp. 845–851). IEEE.Google Scholar
  23. Kelly, Alonzo, & Nagy, Bryan. (2003). Reactive nonholonomic trajectory generation via parametric optimal control. The International Journal of Robotics Research, 22(7–8), 583–601.CrossRefGoogle Scholar
  24. Low, K. H., Dolan, J. M., & Khosla, P. (2011). Active markov information-theoretic path planning for robotic environmental sensing. In The 10th International Conference on Autonomous Agents and Multiagent Systems, Vol. 2, (pp. 753–760). International Foundation for Autonomous Agents and Multiagent Systems.Google Scholar
  25. Tabuada, Paulo, & Pappas, George J. (2005). Hierarchical trajectory refinement for a class of nonlinear systems. Automatica, 41(4), 701–708.MathSciNetCrossRefMATHGoogle Scholar
  26. Msechu, Eric  J, Roumeliotis, Stergios  I, Ribeiro, Alejandro, & Giannakis, Georgios  B. (2008). Decentralized quantized kalman filtering with scalable communication cost. IEEE Transactions on Signal Processing, 56(8), 3727–3741.MathSciNetCrossRefGoogle Scholar
  27. Zhou, Ke, & Roumeliotis, Stergios  I. (2011). Multirobot active target tracking with combinations of relative observations. IEEE Transactions on Robotics, 27(4), 678–695.CrossRefGoogle Scholar
  28. Feder, Hans Jacob  S, Leonard, John  J, & Smith, Christopher  M. (1999). Adaptive mobile robot navigation and mapping. The International Journal of Robotics Research, 18(7), 650–668.CrossRefGoogle Scholar
  29. Bourgault, F., Makarenko, A., Williams, S. B., Grocholsky, B., & Durrant-Whyte, H. F. (2002). Information based adaptive robotic exploration. In IEEE/RSJ International Conference on Intelligent Robots and Systems, 2002, (Vol. 1, pp. 540–545). IEEE.Google Scholar
  30. Stachniss, C., & Burgard, W. (2003). Exploring unknown environments with mobile robots using coverage maps. In Proceedings of the International Conference on Artificial Intelligence (IJCAI).Google Scholar
  31. Spletzer, J. R., & Taylor, C. J. (2003). Dynamic sensor planning and control for optimally tracking targets. The International Journal of Robotics Research, 22(1), 7–20.CrossRefGoogle Scholar
  32. Beard, Randal  W, McLain, Timothy  W, Goodrich, Michael  A, & Anderson, Erik  P. (2002). oordinated target assignment and intercept for unmanned air vehicles. IEEE Transactions on Robotics and Automation, 18(6), 911–922.CrossRefGoogle Scholar
  33. Nesterov, Y. (2007). Gradient methods for minimizing composite objective function. CORE Discussion Papers 2007076, Universit catholique de Louvain, Center for Operations Research and Econometrics (CORE).Google Scholar
  34. Rathnam, Ravi Kulan, & Birk, Andreas. (2013). A distributed algorithm for cooperative 3d exploration under communication constraints. Paladyn, Journal of Behavioral Robotics, 4(4), 223–232.CrossRefGoogle Scholar
  35. Fox, Dieter, Ko, Jonathan, Konolige, Kurt, Limketkai, Benson, Schulz, Dirk, & Stewart, Benjamin. (2006). Distributed multirobot exploration and mapping. Proceedings of the IEEE, 94(7), 1325–1339.CrossRefMATHGoogle Scholar
  36. De Hoog, J., Cameron, S., & Visser, A.. (2009). Role-based autonomous multi-robot exploration. In Future Computing, Service Computation, Cognitive, Adaptive, Content, Patterns, 2009. COMPUTATIONWORLD’09. Computation World:, (pp. 482–487). IEEE.Google Scholar
  37. Freda, L., & Oriolo, G. (2005). Frontier-based probabilistic strategies for sensor-based exploration. In Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 2005, (pp. 3881–3887). IEEE.Google Scholar
  38. Burgard, W., Moors, M., Fox, D., Simmons, R., & Thrun, S. (2000). Collaborative multi-robot exploration. In Proceedings of the 2000 IEEE International Conference on Robotics and Automation, ICRA’00, (Vol. 1, pp. 476–481). IEEE.Google Scholar
  39. Yamauchi, B. (1998). Frontier-based exploration using multiple robots. In Proceedings of the Second International Conference on Autonomous Agents, (pp. 47–53). ACM.Google Scholar
  40. Kavraki, Lydia  E, Svestka, Petr, Latombe, J.-C., & Overmars, Mark  H. (1996). Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Transactions on Robotics and Automation, 12(4), 566–580.CrossRefGoogle Scholar
  41. Kavraki, E. E., Kolountzakis, Mihail  N, & Latombe, J.-C. (1998). Analysis of probabilistic roadmaps for path planning. IEEE Transactions on Robotics and Automation, 14(1), 166–171.CrossRefGoogle Scholar
  42. Prentice, S., & Roy, N. (2009). The belief roadmap: Efficient planning in belief space by factoring the covariance. The International Journal of Robotics Research.Google Scholar
  43. Kuffner, J. J., LaValle, S. M. (2000). Rrt-connect: An efficient approach to single-query path planning. In Proceedings of the IEEE International Conference on Robotics and Automation, 2000, Proceedings. ICRA’00, (Vol. 2, pp. 995–1001). IEEE.Google Scholar
  44. LaValle, Steven  Michael. (2006). Planning algorithms. Cambridge: Cambridge university press.CrossRefMATHGoogle Scholar
  45. Valencia, R., Andrade-Cetto, J., & Porta, J. M. (2011). Path planning in belief space with pose slam. In 2011 IEEE International Conference on Robotics and Automation (ICRA), (pp. 78–83). IEEE.Google Scholar
  46. Birk, Andreas, & Carpin, Stefano. (2006). Merging occupancy grid maps from multiple robots. Proceedings of the IEEE, 94(7), 1384–1397.CrossRefGoogle Scholar
  47. Kollar, Thomas, & Roy, Nicholas. (2008). Trajectory optimization using reinforcement learning for map exploration. The International Journal of Robotics Research, 27(2), 175–196.CrossRefGoogle Scholar
  48. Martinez-Cantin, Ruben, de Freitas, Nando, Brochu, Eric, Castellanos, José, & Doucet, Arnaud. (2009). A bayesian exploration-exploitation approach for optimal online sensing and planning with a visually guided mobile robot. Autonomous Robots, 27(2), 93–103.CrossRefGoogle Scholar
  49. Peng, Wu, Suzuki, Hiromasa, & Kase, Kiwamu. (2005). Model-based simulation system for planning numerical controlled multi-axis 3d surface scanning machine. JSME International Journal Series C, 48, 748–756.CrossRefGoogle Scholar
  50. Doucet, A. (1998). On sequential simulation-based methods for bayesian filtering. Technical report.Google Scholar
  51. Doitsidis, L., Weiss, S., Renzaglia, A., Achtelik, M. W., Kosmatopoulos, E. B., Siegwart, R., et al. (2012). Optimal surveillance coverage for teams of micro aerial vehicles in gps-denied environments using onboad vision. Autonomous Robots, 33(1–2), 173–188.CrossRefGoogle Scholar
  52. Renzaglia, A., Doitsidis, L., Chatzichristofis, S. A., Martinelli, A., & Kosmatopoulos, E. B. (2013). Distributed multi-robot coverage using micro aerial vehicles. In 21st Mediterranean Conference on Control and Automation (pp. 963–968). MED13 Greece: Chania.Google Scholar
  53. Agile project’s website.Google Scholar
  54. Amanatiadis, A., Chatzichristofis, S. A., Charalampous, K., Doitsidis, L., Kosmatopoulos, E. B., Tsalides, P., et al. (2013). A multi-objective exploration strategy for mobile robots under operational constraints. IEEE Access, 1, 691–702.CrossRefGoogle Scholar
  55. Ruppert, D., & Wand, M. P. (1994). Multivariate locally weighted least squares regression. The Annals of Statistics, (pp. 1346–1370).Google Scholar
  56. LSTS lab. Neptus Command and Control Software. http://lsts.fe.up.pt/software/neptus.
  57. LSTS lab. DUNE: Unified Navigation Environment. http://lsts.fe.up.pt/software/dune.

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Athanasios Ch. Kapoutsis
    • 1
    • 2
  • Savvas A. Chatzichristofis
    • 1
    • 2
  • Lefteris Doitsidis
    • 3
  • João Borges de Sousa
    • 4
  • Jose Pinto
    • 4
  • Jose Braga
    • 4
  • Elias B. Kosmatopoulos
    • 1
    • 2
  1. 1.Democritus University of ThraceXanthiGreece
  2. 2.Information Technologies Institute, CERTHThessalonikiGreece
  3. 3.Department of Electronic EngineeringTechnological Educational Institute of CreteChaniaGreece
  4. 4.Faculdade de Engenharia da Universidade do PortoPortoPortugal

Personalised recommendations