Skip to main content
Log in

Estimation of a nonvisible field-of-view mobile target incorporating optical and acoustic sensors

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

This paper presents a nonvisible field-of-view (NFOV) target estimation approach that incorporates optical and acoustic sensors. An optical sensor can accurately localize a target in its field-of-view whereas the acoustic sensor could estimate the target location over a much larger space, but only with limited accuracy. A recursive Bayesian estimation framework where observations of the optical and acoustic sensors are probabilistically treated and fused is proposed in this paper. A technique to construct the observation likelihood when two microphones are used as the acoustic sensor is also described. The proposed technique derives and stores the interaural level difference of observations from the two microphones for different target positions in advance and constructs the likelihood through correlation. A parametric study of the proposed acoustic sensing technique in a controlled test environment, and experiments with an NFOV target in an actual indoor environment are presented to demonstrate the capability of the proposed technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Bahl, P., & Padmanabhan, V. N. (2000). Radar: An in-building rf-based user location and tracking system. In INFOCOM 2000. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings IEEE, (Vol. 2, pp. 775–784). IEEE.

  • Bertinato, M., Ortolan, G., Maran, F., Marcon, R., Marcassa, A., Zanella, F., Zambotto, M., Schenato, L., & Cenedese, A. (2008). RF localization and tracking of mobile nodes in wireless sensors networks: Architectures, algorithms and experiments.

  • Chan, Y., Tsui, W., So, H., & Ching, P. (2006). Time-of-arrival based localization under nlos conditions. IEEE Transactions on Vehicular Technology, 55(1), 17–24.

    Article  Google Scholar 

  • Chen, P. (1999). A non-line-of-sight error mitigation algorithm in location estimation. In Wireless Communications and Networking Conference, 1999. WCNC. 1999 IEEE, (pp. 316–320). IEEE.

  • Dai, H., Zhu, Z., & Gu, X. (2012). Multi-target indoor localization and tracking on video monitoring system in a wireless sensor network. Journal of Network and Computer Applications, 36(1), 228–234.

    Article  Google Scholar 

  • Even, J., Morales, Y., Kallakuri, N., Ishi, C., & Hagita, N. (2014). Audio ray tracing for position estimation of entities in blind regions. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014), 2014 , (pp. 1920–1925). IEEE.

  • Furukawa, T., Bourgault, F., Lavis, B., & Durrant-Whyte, H. (2006). Recursive bayesian search-and-tracking using coordinated uavs for lost targets. In Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006 (pp. 2521–2526). IEEE.

  • Furukawa, T., Mak, L. C., DurrantWhyte, H., & Madhavan, R. (2012). Autonomous bayesian search and tracking, and its experimental validation. Advanced Robotics, 26(5–6), 461–485.

    Article  Google Scholar 

  • Gao, P., Shi, W., Zhou, W., Li, H., & Wang, X. (2013). A location predicting method for indoor mobile target localization in wireless sensor networks. International Journal of Distributed Sensor Networks. doi:10.1155/2013/949285.

  • Gezici, S. (2008). A survey on wireless position estimation. Wireless Personal Communications, 44(3), 263–282.

    Article  Google Scholar 

  • Guvenc, I., & Chong, C. (2009). A survey on toa based wireless localization and nlos mitigation techniques. IEEE Communications Surveys & Tutorials, 11(3), 107–124.

    Article  Google Scholar 

  • Jankovic, N. D., & Naish, M. D. (2005). Developing a modular active spherical vision system. In Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 2005. ICRA 2005 (pp. 1234–1239). IEEE.

  • Jung, J., & Myung, H. (2011). Indoor localization using particle filter and map-based nlos ranging model. In 2011 IEEE International Conference on Robotics and Automation (ICRA) (pp. 5185–5190).

  • Khoury, H. M., & Kamat, V. R. (2009). Evaluation of position tracking technologies for user localization in indoor construction environments. Automation in Construction, 18(4), 444–457.

    Article  Google Scholar 

  • Kimoto, D., & Kumon, M. (2011). On sound direction estimation by binaural auditory robots with pinnae. 35th Meeting of Special Interest Group on AI Challenges.

  • Kimoto, D., & Kumon, M. (2012). Optimization of the ear canal position for sound localization using interaural level difference. 36th Meeting of Special Interest Group on AI Challenges.

  • Kobilarov, M., Sukhatme, G., Hyams, J., & Batavia, P. (2006). People tracking and following with mobile robot using an omnidirectional camera and a laser. In Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006 (pp. 557–562). IEEE.

  • Ladd, A. M., Bekris, K. E., Rudys, A. P., Wallach, D. S., & Kavraki, L. E. (2004). On the feasibility of using wireless ethernet for indoor localization. IEEE Transactions on Robotics and Automation, 20(3), 555–559.

    Article  Google Scholar 

  • Ledwich, L., & Williams, S. (2004). Reduced SIFT features for image retrieval and indoor localisation. In Australian conference on robotics and automation (Vol. 322, p. 3).

  • Liu, H., Darabi, H., Banerjee, P., & Liu, J. (2007). Survey of wireless indoor positioning techniques and systems. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 37(6), 1067–1080.

    Article  Google Scholar 

  • Lu, Y., & Cooke, M. (2010). Binaural estimation of sound source distance via the direct-to-reverberant energy ratio for static and moving sources. IEEE Transactions on Audio, Speech, and Language Processing, 18(7), 1793–1805.

    Article  Google Scholar 

  • Mak, L. C., & Furukawa, T. (2009). Non-line-of-sight localization of a controlled sound source. In IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2009. AIM 2009 (pp. 475–480). IEEE.

  • Mauler, R. (2003). Recent developments in cooperative control and optimizatio, chapter Objective functions for Bayesian control-theoretic sensor management, II: MHC-Like approximation (pp. 273–316). Kluwer Academic Publishers, Norwell, MA.

  • Nakadai, K., Nakajima, H., Murase, M., Kaijiri, S., Yamada, K., Nakamura, T., Hasegawa, Y., Okuno, H. G., & Tsujino, H. (2006). Robust tracking of multiple sound sources by spatial integration of room and robot microphone arrays. In 2006 IEEE International Conference on Acoustics, Speech and Signal Processing, 2006. ICASSP 2006 Proceedings (Vol. 4, pp. IV–IV). IEEE.

  • Narang, G., Nakamura, K., & Nakadai, K. (2014). Auditory-aware navigation for mobile robots based on reflection-robust sound source localization and visual slam. In 2014 IEEE International Conference on Systems, Man and Cybernetics (SMC) (pp. 4021–4026). IEEE.

  • Nayar, S. K. (1997). Catadioptric omnidirectional camera. In Proceedings., 1997 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1997 (pp. 482–488). IEEE.

  • Ni, L. M., Liu, Y., Lau, Y. C., & Patil, A. P. (2004). Landmarc: Indoor location sensing using active rfid. Wireless networks, 10(6), 701–710.

    Article  Google Scholar 

  • Noda, Y., & Kumon, M. (2012). Sound source direction estimation in the median plane by two active pinnae. 13th SICE System Integration Division Annual Conference.

  • Prigge, E. A. (2004). A positioning system with no line-of-sight restrictions for cluttered environments. PhD thesis, Stanford University.

  • Riba, J., & Urruela, A. (May 2005). A non-line-of-sight mitigation technique based on ml-detection. In Proceedings of IEEE International Conference on Acoustic, Speech and Signal Processing (Vol. 2, pp. 153–156).

  • Sasaki, Y., Kagami, S., & Mizoguchi, H. (2009). Online short-term multiple sound source mapping for a mobile robot by robust motion triangulation. Advanced Robotics, 23(1–2), 145–164.

    Article  Google Scholar 

  • Sederberg, T. W., Zheng, J., Bakenov, A., & Nasri A. (2003). T-splines and t-nurccs. In ACM transactions on graphics (TOG) (Vol. 22, pp. 477–484). ACM.

  • Seow, C. K., & Tan, S. Y. (2008). Non-line-of-sight localization in multipath environments. IEEE Transactions on Mobile Computing, 7(5), 647–660.

    Article  Google Scholar 

  • Svaizer, P., Brutti, A., & Omologo, M. (2012). Environment aware estimation of the orientation of acoustic sources using a line array. In 2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO) (pp. 1024–1028). IEEE.

  • Valin, J., Michaud, F., Rouat, J., & Létourneau, D. (2003). Robust sound source localization using a microphone array on a mobile robot. In Proceedings. 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2003.(IROS 2003) (Vol 2, pp. 1228–1233). IEEE.

  • Wang, J., Gao, Q., Yu, Y., Wang, H., & Jin, M. (2012). Toward robust indoor localization based on bayesian filter using chirp-spread-spectrum ranging. IEEE Transactions on Industrial Electronics, 59(3), 1622–1629.

    Article  Google Scholar 

  • Zhang, D., Yang, Y., Cheng, D., Liu, S., & Ni, L. M. (2010). Cocktail: An rf-based hybrid approach for indoor localization. In 2010 IEEE International Conference on Communications (ICC) (pp. 1–5). IEEE.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuya Takami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takami, K., Furukawa, T., Kumon, M. et al. Estimation of a nonvisible field-of-view mobile target incorporating optical and acoustic sensors. Auton Robot 40, 343–359 (2016). https://doi.org/10.1007/s10514-015-9473-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-015-9473-9

Keywords

Navigation