Autonomous Robots

, Volume 40, Issue 1, pp 139–158 | Cite as

Soldercubes: a self-soldering self-reconfiguring modular robot system

  • Jonas Neubert
  • Hod Lipson


Soldercubes are a self-reconfiguring modular robot (MR) system whose modules are light weight, low cost, and designed with manufacturability for large batch production in mind. The frequently cited promises of modular robotics—versatility, robustness, and low cost—assume the availability of large numbers of modules. However, modules in most MR prototypes are large, mechanically complex, expensive, and difficult to manufacture. Soldercubes partially overcome this contradiction through optimizing some components for volume manufacturing processes. With the integration of a soldering connector which weighs only 2 g and has no moving parts, Soldercubes are among the cheapest, lightest and smallest among comparable self-reconfiguring MR systems. This paper describes the Soldercube module design in detail, reports on experiments in a lattice configuration, explores non-lattice applications of the system, and discusses the effects of utilising volume manufacturing processes in module production. All Soldercubes design files are released as open source hardware.


Cellular and modular robots  Self-reconfiguration Design for manufacturability 



This work was supported by the U.S. National Science Foundations Office of Emerging Frontiers in Research and Innovation, Grant #0735953.


  1. Baldwin, C. Y., & Clark, K. B. (2000). Design rules, Volume 1: The power of modularity. Boston, MA: MIT Press.Google Scholar
  2. Beni, G. (1988). The concept of cellular robotic system. In IEEE Proceedings of the International Symposium on Intelligent Control, Arlington, VA (pp. 57–62). doi: 10.1109/ISIC.1988.65405.
  3. Beni, G. (2004). From swarm intelligence to swarm robotics (Chap. 1). Lecture Notes in Computer Science: Swarm Robotics (pp. 1–9). Berlin: Springer. doi: 10.1007/978-3-540-30552-1_1.
  4. Castano, A., Chokkalingam, R., & Will, P. M. (2000). Autonomous and self-sufficient CONRO modules for reconfigurable robots (Chap. 5). In L. E. Parker, G. Bekey, & J. Barhen (Eds.), Distributed autonomous robotic systems 4 (pp. 155–164). Japan: Springer.CrossRefGoogle Scholar
  5. Daidie, D., Barbey, O., Guignard, A., Roussy, D., Guenter, F., Ijspeert, A., & Billard, A. (2007). The DoF-Box project: An educational kit for configurable robots. In IEEE/ASME International Conference on Advanced Intelligent Mechatronics (pp. 1–6). doi: 10.1109/AIM.2007.4412571.
  6. Davey, J., Kwok, N., & Yim, M. (2012). Emulating self-reconfigurable robots - design of the SMORES system. In IEEE/RSJ Proceedings of the International Conference on Intelligent Robots and Systems (IROS), IEEE/RSJ, Vilamoura, Portugal (pp. 4464–4469). doi: 10.1109/IROS.2012.6385845.
  7. Diller, E., Zhang, N., & Sitti, M. (2013). Bonding methods for modular micro-robotic assemblies. In IEEE Proceedings of the International Conference on Robotics and Automation (ICRA), Karlsruhe, Germany (pp. 2588–2593). doi: 10.1109/ICRA.2013.6630931.
  8. Electricimp (2013) specification: imp001.Google Scholar
  9. Fukuda, T., & Nakagawa, S. (1988). Dynamically reconfigurable robotic system. In IEEE Proceedings of the International Conference on Robotics and Automation (ICRA), Philadelphia, PA (pp. 1581–1586). doi: 10.1109/ROBOT.1988.12291.
  10. Gilpin, K., & Rus, D. (2010). Modular robot systems. IEEE Robotics & Automation Magazine, 17(3), 38–55. doi: 10.1109/MRA.2010.937859.CrossRefGoogle Scholar
  11. Goldstein, S. C., Campbell, J. D., & Mowry, T. C. (2005). Programmable matter. Computer, 38(6), 99–101. doi: 10.1109/MC.2005.198.CrossRefGoogle Scholar
  12. Gross, R., Bonani, M., Mondada, F., & Dorigo, M. (2006). Autonomous self-assembly in swarm-bots. IEEE Transactions on Robotics, 22(6), 1115–1130. doi: 10.1109/TRO.2006.882919.CrossRefGoogle Scholar
  13. Jorgensen, M. W., Ostergaard, E. H., & Lund, H. H. (2004). Modular ATRON: Modules for a self-reconfigurable robot. In IEEE/RSJ Proceedings of the International Conference on Intelligent Robots and Systems (IROS) (Vol. 2, pp. 2068–2073). doi: 10.1109/IROS.2004.1389702.
  14. Kirby, B.T., Aksak, B., Campbell, J. D., Hoburg, J. F., Mowry, T. C., Pillai, P., & Goldstein, S.C. (2007). A modular robotic system using magnetic force effectors. In IEEE/RSJ Proceedings of the International Conference on Intelligent Robots and Systems (IROS), San Diego, CA (pp. 2787–2793). doi: 10.1109/IROS.2007.4399444.
  15. Koseki, M., Minami, K., & Inou, N. (2007). Cellular robots forming a mechanical structure. In R. Alami, R. Chatila, & H. Asama (Eds.), Distributed autonomous robotic systems (Vol. 6, pp. 139–148). Berlin: Springer. doi: 10.1007/978-4-431-35873-2_14.
  16. Kotay, K., Rus, D., Vona, M., & McGray, C. (1998). The self-reconfiguring robotic molecule. In IEEE Proceedings of the International Conference on Robotics and Automation (ICRA), Louven, Belgium (Vol. 1, pp. 424–431). doi: 10.1109/ROBOT.1998.676452.
  17. Kurokawa, H., Kamimura, A., Yoshida, E., Tomita, K., Kokaji, S., & Murata, S. (2003). M-TRAN II: Metamorphosis from a four-legged walker to a caterpillar. In IEEE/RSJ Proceedings of the International Conference on Intelligent Robots and Systems (IROS), Las Vegas (Vol. 3, pp. 2454–2459). doi: 10.1109/IROS.2003.1249238.
  18. Kurokawa, H., Tomita, K., Kamimura, A., & Kokaji, S. (2008). Distributed self-reconfiguration of M-TRAN III modular robotic system. International Journal of Robotics Research, 27(3–4), 373–386. doi: 10.1177/0278364907085560.CrossRefGoogle Scholar
  19. Liedke, J., Matthias, R., Winkler, L., & Worn, H. (2013). The collective self-reconfigurable modular organism (CoSMO). In IEEE Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Wollongong, Australia (pp. 1–6). doi: 10.1109/AIM.2013.6584059.
  20. Miyashita, S., Casanova, F., Lungarella, M., & Pfeifer, R. (2008). Peltier-based freeze-thaw connector for waterborne self-assembly systems. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Nice, France (Vol. 3, pp. 1325–1330). doi: 10.1109/IROS.2008.4650922.
  21. Moubarak, P., & Ben-Tzvi, P. (2012). Modular and reconfigurable mobile robotics. Robotics and Autonomous Systems, 60(12), 1648–1663. doi: 10.1016/j.robot.2012.09.002.CrossRefGoogle Scholar
  22. Murata, S., Kurokawa, H., Yoshida, E., Tomita, K., & Kokaji, S. (1998). A 3-D self-reconfigurable structure. In IEEE Proceedings of the International Conference on Robotics and Automation (ICRA), Leuven, Belgium (Vol. 1, pp. 432–439) doi: 10.1109/ROBOT.1998.677012.
  23. Murata, S., Yoshida, E., Tomita, K., Kurokawa, H., Kamimura, A., & Kokaji, S. (2000). Hardware design of modular robotic system. In IEEE Proceedings of the International Conference on Intelligent Robots and Systems (IROS), Takamatsu, Japan (Vol. 3, pp. 2210–2217). doi: 10.1109/IROS.2000.895297.
  24. Nelson, C. A., Chu, K. D., & Dasgupta, P. (2010). ModRED: A modular self-reconfigurable robot for autonomous extra-terrestrial exploration and discovery. In IEEE Planetary Rovers Workshop, International Conference for Robotics and Automation (ICRA) 2010, Anchorage, AK.Google Scholar
  25. Neubert, J., Rost, A., & Lipson, H. (2014). Self-soldering connectors for modular robots. IEEE Transactions on Robotics, 30(6), 1344–1357. doi: 10.1109/TRO.2014.2344791.CrossRefGoogle Scholar
  26. Ostergaard, E. H., Kassow, K., Beck, R., & Lund, H. H. (2006). Design of the ATRON lattice-based self-reconfigurable robot. Autonomous Robots, 21(2), 165–183. doi: 10.1007/s10514-006-8546-1.CrossRefGoogle Scholar
  27. Revzen, S., Sastra, J., Eckenstien, N., & Yim, M. (2010). CKBot platform for the ICRA 2010 planetary challenge. In IEEE Proceedings of the ICRA Workshop on Modular Robots, State of the Art, Anchorage, AK (pp. 11–12).Google Scholar
  28. Romanishin, J., Gilpin, K., & Rus, D. (2013). M-Blocks: momentum-driven, magnetic modular robots. In IEEE/RSJ Proceedings of the International Conference on Intelligent Robots and Systems (IROS), Tokyo, Japan. doi: 10.1109/IROS.2013.6696971.
  29. Rubenstein, M., Ahler, C., & Nagpal, R. (2012). Kilobot: A low cost scalable robot system for collective behaviors. In 2012 IEEE International Conference on Robotics and Automation (pp. 3293–3298). doi: 10.1109/ICRA.2012.6224638.
  30. Sahin, E. (2004). Swarm robotics: From sources of inspiration to domains of application. In Swarm robotics. Lecture Notes in Computer Science (pp. 10–20). Berlin: Springer. doi: 10.1007/978-3-540-30552-1_2.
  31. Salemi, B., Moll, M., & Shen, W.m. (2006). SUPERBOT: A deployable, multi-functional, and modular self-reconfigurable robotic system. In IEEE/RSJ Proceedings of the International Conference on Intelligent Robots and Systems (IROS), Beijing, China (pp. 3636–3641). doi: 10.1109/IROS.2006.281719.
  32. Spröwitz, A., Pouya, S., Bonardi, S., Van den Kieboom, J., Moeckel, R., Billard, A., et al. (2010). Roombots: Reconfigurable robots for adaptive furniture. IEEE Computational Intelligence Magazine, 5(3), 20–32. doi: 10.1109/MCI.2010.937320.CrossRefGoogle Scholar
  33. Spröwitz, A., Moeckel, R., Vespignani, M., Bonardi, S., & Ijspeert, A.J. (2013). Roombots: A hardware perspective on 3D self-reconfiguration and locomotion with a homogeneous modular robot. Robotics and Autonomous Systems, 7(62), 1016–1033. doi: 10.1016/j.robot.2013.08.011.
  34. Stoy, K., Brandt, D., & Christensen, D. J. (2010). Self-reconfigurable robots: An introduction. Cambridge, MA: MIT Press.Google Scholar
  35. Suh, J. W., Homans, S. B., & Yim, M. (2002). Telecubes: mechanical design of a module for self-reconfigurable robotics. In: IEEE proceedings of the international conference on robotics and automation (ICRA), Washington, DC (Vol. 4, pp. 4095–4101). doi: 10.1109/ROBOT.2002.1014385.
  36. Unsal, C., Kiliccote, H., & Khosla, P. K. (1999). I(CES)-cubes: a modular self-reconfigurable bipartite robotic system. In Proceedings of the SPIE: Sensor fusion and decentralized control in robotic systems II (Vol. 3839, pp. 258–269). doi: 10.1117/12.360346.
  37. von Neumann, J., & Burks, A. W. (1966). Theory of self-reproducing automata. Champaign: University of Illinois Press.Google Scholar
  38. Wang, L., & Iida, F. (2013). Physical connection and disconnection control based on hot melt adhesives. IEEE/ASME Transactions on Mechatronics, 18(4), 1397–1409. doi: 10.1109/TMECH.2012.2202558.CrossRefGoogle Scholar
  39. White, P. J., & Yim, M. (2009). Reliable external actuation for full reachability in robotic modular self-reconfiguration. The International Journal of Robotics Research, 29(5), 598–612. doi: 10.1177/0278364909351942.CrossRefGoogle Scholar
  40. White, P.J., Zykov, V., Bongard, J., & Lipson, H. (2005). Three dimensional stochastic reconfiguration of modular robots. In Proceedings of the Robotics: Science and Systems (pp. 161–168).Google Scholar
  41. Wolfe, K.C., Moses, M.S., Kutzer, M.D., & Chirikjian, G.S. (2012). M3Express: A low-cost independently-mobile reconfigurable modular robot. In IEEE Proceedings of the International Conference on Robotics and Automation (ICRA), Saint Paul, MN (pp. 2704–2710). doi: 10.1109/ICRA.2012.6224971.
  42. Yim, M. (1993). A reconfigurable modular robot with many modes of locomotion. In JSME Proceedings of the JSME International Conference on Advanced Mechatronics, Tokyo, Japan (pp. 283–288).Google Scholar
  43. Yim, M., Duff, D., & Roufas, K. D. (2000). PolyBot: a modular reconfigurable robot. In IEEE Proceedings of the International Conference on Robotics and Automation (ICRA), San Francisco (Vol. 1, pp. 514–520). doi: 10.1109/ROBOT.2000.844106.
  44. Yim, M., Ying, Z., & Duff, D. (2002). Modular robots. IEEE Spectrum, 39(2), 30–34. doi: 10.1109/6.981854.CrossRefGoogle Scholar
  45. Yim, M., Shen, W. M., Salemi, B., Rus, D., Moll, M., Lipson, H., et al. (2007a). Modular self-reconfigurable robot systems [grand challenges of robotics]. IEEE Robotics & Automation Magazine, 14(1), 43–52. doi: 10.1109/MRA.2007.339623.
  46. Yim, M., Shirmohammadi, B., Sastra, J., Park, M., Dugan, M., & Taylor, C. (2007b). Towards robotic self-reassembly after explosion. In IEEE Proceedings of the International Conference on Intelligent Robots and Systems (IROS), San Diego, CA (pp. 2767–2772). doi: 10.1109/IROS.2007.4399594.
  47. Yim, M., White, P. J., Park, M., & Sastra, J. (2009). Modular self-reconfigurable robots. Encyclopedia of complexity and systems science (pp. 5618–5631). New York: Springer. doi: 10.1007/978-0-387-30440-3_334.
  48. Zhang, H., Gonzalez-Gomez, J., Me, Z., Cheng, S., & Zhang, J. (2008). Development of a low-cost flexible modular robot GZ-I. In IEEE/ASME International Conference on Advanced Intelligent Mechatronics (pp. 223–228). doi: 10.1109/AIM.2008.4601663.
  49. Zykov, V., Mytilinaios, E., Adams, B., & Lipson, H. (2005). Self-reproducing machines. Nature, 435(7038), 163–164.CrossRefGoogle Scholar
  50. Zykov, V., Chan, A., & Lipson, H. (2007a). Molecubes: An open-source modular robotics kit. In IEEE/RSJ Self-Reconfigurable Robotics Workshop at the International Conference of Robotics and Intelligent Systems (IROS), San Diego, CA.Google Scholar
  51. Zykov, V., Mytilinaios, E., Lipson, H., & Desnoyer, M. (2007b). Evolved and designed self-reproducing modular robotics. IEEE Transactions on Robotics, 23(2), 308–319.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Creative Machines Lab, Department of Mechanical and Aerospace EngineeringCornell UniversityIthacaUSA

Personalised recommendations