Advertisement

Autonomous Robots

, Volume 38, Issue 4, pp 383–413 | Cite as

Distributed reconfiguration of 2D lattice-based modular robotic systems

  • Ferran Hurtado
  • Enrique Molina
  • Suneeta Ramaswami
  • Vera SacristánEmail author
Article

Abstract

We prove universal reconfiguration (i.e., reconfiguration between any two robotic systems with the same number of modules) of 2-dimensional lattice-based modular robots by means of a distributed algorithm. To the best of our knowledge, this is the first known reconfiguration algorithm that applies in a general setting to a wide variety of particular modular robotic systems, and holds for both square and hexagonal lattice-based 2-dimensional systems. All modules apply the same set of local rules (in a manner similar to cellular automata), and move relative to each other akin to the sliding-cube model. Reconfiguration is carried out while keeping the robot connected at all times. If executed in a synchronous way, any reconfiguration of a robotic system of \(n\) modules is done in \(O(n)\) time steps with \(O(n)\) basic moves per module, using \(O(1)\) force per module, \(O(1)\) size memory and computation per module (except for one module, which needs \(O(n)\) size memory to store the information of the goal shape), and \(O(n)\) communication per module.

Keywords

Self-organizing robots Distributed reconfiguration Universal reconfiguration 

Notes

Acknowledgments

The authors wish to explicitly thank the students Reinhard Wallner, Óscar Rodríguez, Sergio Ordóñez and Ángel Rodríguez for their precise work in implementing simulators and simulations. We also wish to thank an anonymous referee for detailed comments that helped to improve the readability of the paper. Suneeta Ramaswami was partially supported by NSF grant CCF-0830589. Ferran Hurtado and Vera Sacristán were partially supported by Projects MTM2012-30951, Gen. Cat. DGR 2009SGR1040, and ESF EUROCORES programme EuroGIGA, CRP ComPoSe: MICINN Project EUI-EURC-2011-4306, for Spain.

References

  1. Abel, Z., & Kominers, S. D. (2008). Pushing hypercubes around. CoRR abs/0802.3414.Google Scholar
  2. Aloupis, G., Benbernou, N., Damian, M., Demaine, E., Flatland, R., Iacono, J., et al. (2013). Efficient reconfiguration of lattice-based modular robots. Computational Geometry—Theory and Applications, 46(8), 917–928.CrossRefzbMATHMathSciNetGoogle Scholar
  3. Aloupis, G., Collette, S., Damian, M., Demaine, E. D., Flatland, R., Langerman, S., et al. (2011). Efficient constant-velocity reconfiguration of crystalline robots. Robotica, 29(1), 59–71.CrossRefGoogle Scholar
  4. An, B. K. (2008). Em-cube: Cube-shaped, self-reconfigurable robots sliding on structure surfaces. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 3149–3155.Google Scholar
  5. Bateau, J., Clark, A., McEachern, K., Schutze, E., & Walter, J. (2012). Increasing the efficiency of distributed goal-filling algorithms for self-reconfigurable hexagonal metamorphic robots. In Proceedings of the International Conference on Parallel and Distributed Techniques and Applications, pp. 509–515.Google Scholar
  6. Benbernou, N. M. (2011). Geometric algorithms for reconfigurable structures. Ph.D. thesis, Department of Mathematics, Massachusetts Institute of Technology, Cambridge (MA), USA.Google Scholar
  7. Beni, G. (1988). The concept of cellular robotic system. In Proceedings of the IEEE International Symposium on Intelligent Control, pp. 57–62.Google Scholar
  8. Bhat, P. S., Kuffner, J., Goldstein, S. C., & Srinivasa, S. S. (2006). Hierarchical motion planning for self-reconfigurable modular robots. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS), pp. 886–891.Google Scholar
  9. Bishop, J., Burden, S., Klavins, E., Kreisberg, R., Malone, W., Napp, N., & Nguyen, T. (2005). Programmable parts: A demonstration of the grammatical approach to self-organization. In Proceedings of the IEEE/RSJ International conference on intelligent robots and systems (IROS), pp. 3684–3691.Google Scholar
  10. Bojinov, H., Casal, A., & Hogg, T. (2000). Emergent structures in modular self-reconfigurable robots. In Proceedings of the IEEE international conference on robotics and automation (ICRA), pp. 1734–1741.Google Scholar
  11. Butler, Z., Fitch, R., & Rus, D. (2002). Distributed control for unit-compressible robots: Goal-recognition, locomotion and splitting. IEEE/ASME Transaction on Mechatronics, 7(4), 418–430.CrossRefGoogle Scholar
  12. Butler, Z., Kotay, K., Rus, D., & Tomita, K. (2004). Generic decentralized control for lattice-based self-reconfigurable robots. The International Journal of Robotics Research, 23, 919–937.CrossRefGoogle Scholar
  13. Butler, Z., & Rus, D. (2003). Distributed planning and control for modular robots with unit-compressible modules. The International Journal of Robotics Research, 22(9), 699–715.CrossRefGoogle Scholar
  14. Castano, A., Shen, W.-M., & Will, P. (2000). CONRO: Towards deployable robots with inter-robots metamorphic capabilities. Autonomous Robots, 8(3), 309–324.CrossRefGoogle Scholar
  15. Chiang, C. J., & Chirikjian, G. (2001). Modular robot motion planning using similarity metrics. Autonomous Robots, 10, 91–106.CrossRefzbMATHGoogle Scholar
  16. Dewey, D. J., Ashley-Rollman, M. P., De Rosa, M., Goldstein, S. C., Mowry, T. C., Srinivasa, S. S., Pillai, P., & Campbell, J. (2008). Generalizing metamodules to simplify planning in modular robotic systems. In Proceedings of the IEEE/RSJ internacional conference on intelligent robots and systems (IROS), pp. 1338–1345.Google Scholar
  17. Dumitrescu, A., & Pach, J. (2004). Pushing squares around. In Proceedings of the 20th annual ACM symposium on computational geometry (SoCG), pp. 116–123.Google Scholar
  18. Dumitrescu, A., Suzuki, I., & Yamashita, M. (2004). Formations for fast locomotion of metamorphic robotic systems. The International Journal of Robotics Research, 23(6), 583–593.CrossRefGoogle Scholar
  19. Dumitrescu, A., Suzuki, I., & Yamashita, M. (2004). Motion planning for metamorphic systems: Feasibiity, decidability, and distributed reconfiguration. IEEE Transactions on Robotics and Automation, 20(3), 409–418.CrossRefGoogle Scholar
  20. Fitch, R., & Butler, Z. (2008). Million module march: Scalable locomotion for large self-reconfiguring robots. The International Journal of Robotics Research, 27(3–4), 331–343.CrossRefGoogle Scholar
  21. Fukuda, T., Ueyama, T., Kawauchi, Y., & Arai, F. (1992). Concept of cellular robotic system (CEBOT) and basic strategies for its realization. Computers and Electronical Engineering, 18(1), 11–39.CrossRefGoogle Scholar
  22. Gilpin, K., Kotay, K., Rus, D., & Vasilescu, I. (2008). Miche: Modular shape formation by self-disassembly. The International Journal of Robotics Research, 27(3–4), 345–372.CrossRefGoogle Scholar
  23. Hosokawa, K., Tsujimori, T., Fujii, T., Kaetsu, H., Asama, H., Kuroda, Y., & Endo, I. (1998). Self-organizing collective robots with morphogenesys in a vertical plane. In Proceedings of the IEEE international conference on robotics and automation (ICRA), pp. 2858–2863.Google Scholar
  24. Ivanov, P., & Walter, J. (2010). Layering algorithm for collision-free traversal using hexagonal self-reconfigurable metamorphic robots. In Proceedings of IEEE/RSJ international conference on robots and systems (IROS), pp. 521–528.Google Scholar
  25. Jorgensen, M. W., Esben, E. H., Ostergaard, H., & Lund, H. H. (2004). Modular ATRON: Modules for a self-reconfigurable robot. In Proceedings of IEEE/RSJ international conference on robots and systems (IROS), pp. 2068–2073.Google Scholar
  26. Kirbi, B. T., Aksak, B., Goldstein, S. C., Hoburg, J. F., Mowry, T. C., & Pillai, P. (2007). Modular robots using magnetic force effects. In Proceedings of the IEEE/RSJ international conference on intellingent robots and sytems (IROS), 3, 2787–2793.Google Scholar
  27. Kotay, K., & Rus, D. (2004). Generic distributed assembly and repair algorithms for self-reconfiguring robots. In Proceedings of the IEEE international conference on intelligent robots and systems (IROS), 3, 2362–2369.Google Scholar
  28. Kotay, K. D., & Rus, D. L. (2000). Algorithms for self-reconfiguring molecule motion planning. In Proceedings of the IEEE/RSJ international conference on inteligent robots and systems (IROS), pp. 2184–2193.Google Scholar
  29. Kurokawa, H., Tomita, K., Kamimura, A., Kokaji, S., Hasuo, T., & Murata, S. (2008). Distributed self-reconfiguration of M-TRAN III modular robotic system. The International Journal of Robotics Research, 27, 373–386.CrossRefGoogle Scholar
  30. Liu, J., Ma, S., Lu, Z., Wang, Y., Li, B., & Wang, J. (2005). Design and experiment of a novel link-type shape shifting modular robot series. In Proceedings of the IEEE international conference on robotics and biomimetics (ROBIO), pp. 318–323.Google Scholar
  31. Molina, E. (2012). Self-reconfiguration of hexagonal lattice-based modular robotic systems. Master’s thesis, Facultat de Matemàtiques i Estadística, Universitat Politècnica de Catalunya, Barcelona, Spain.Google Scholar
  32. Mondada, F., Pettinaro, G. C., Guignard, A., Kwee, I., Floreano, D., Deneubourg, J.-L., et al. (2004). Swarm-bot: A new distributed robotic concept. Autonomous Robots, special Issue on Swarm Robotics, 17(2–3), 193–221.CrossRefGoogle Scholar
  33. Murata, S., & Kurokawa, H. (2012). Self-organizing robots, volume 77 of Springer tracts in advanced robotics. Berlin: Springer.Google Scholar
  34. Murata, S., Kurokawa, H., & Kokaji, S. (1994). Self-assembling machine. In Proceedings of the IEEE international conference on robotics and automation (ICRA), pp. 442–448.Google Scholar
  35. Murata, S., Kurokawa, H., Yoshida, E., Tomita, K., & Kokaji, S. (1998). A 3-D self-reconfigurable structure. In Proceedings of the IEEE international conference on robotics and automation (ICRA), pp. 432–439.Google Scholar
  36. Murata, S., Yoshida, E., Kurokawa, H., Tomita, K., & Kokaji, S. (2001). Self-repairing mechanical systems. Autonomous Robots, 10, 7–21.CrossRefzbMATHGoogle Scholar
  37. Nguyen, A., Guibas, L. J., & Yim, M. (2000). Controlled module density helps reconfiguration planning. In Proceedings of the international workshop on algorithmic foundations of robotics (WAFR), pp. 23–36.Google Scholar
  38. Nichitiu, C., Mazoyer, J., & Rémila, E. (2001). Algorithms for leader election by cellular automata. Journal of Algorithms, 41(2), 302–329.CrossRefzbMATHMathSciNetGoogle Scholar
  39. Ordóñez, S. (2013). Simulación de algoritmos distribuidos para sistemas robóticos modulares en retículos hexagonales. (Simulating distributed algorithms for modular robotic systems on hexagonal lattices) Degree thesis, Facultat de Matemàtiques i Estadística, Universitat Politècnica de Catalunya, Barcelona, Spain.Google Scholar
  40. Pamecha, A., Chiang, C., Stein, D., & Chirikjian, G. (1996). Design and implementation of metamorphic robots. In Proceedings of the ASME design engineering technical conference and computers in engineering conference.Google Scholar
  41. Rodríguez, O. (2013). Simulació de l’actuació distribuïda de robots modulars. (Simulating distributed actuation of modular robots) Degree thesis, Facultat d’Informàtica de Barcelona, Universitat Politècnica de Catalunya, Barcelona, Spain.Google Scholar
  42. Rus, D., & Vona, M. (2001). Crystalline robots: Self-reconfiguration with compressible unit modules. Autonomous Robots, 10(1), 107–124.CrossRefzbMATHGoogle Scholar
  43. Sadjadi, H., Mohareri, O., Amin Al-Jarrah, M., & Assaleh, K. (2009). Design and implementation of HexBot: A modular self-reconfigurable robotic system. In Proceedings of the sixth international symposium on mechatronics and its applications, pp. 1–6.Google Scholar
  44. Salemi, B., Moll, M., & Shen, W.-M. (2006). Superbot: A deployable, multi-functional, and modular self-reconfigurable robotic system. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS), pp. 3637–3641.Google Scholar
  45. Sproewitz, A., Billard, A., Dillenbourg, P., & Ijspeert, A. J. (2009). Roombots-mechanical design of self-reconfiguring modular robots for adaptive furniture. In Proceedings of the IEEE international conference on robotics and automation (ICRA), pp. 4259–4264.Google Scholar
  46. Støy, K. (2006). How to construct dense objets with self-reconfigurable robots. In Proceedings of the European robotics symposium, pp. 27–37.Google Scholar
  47. Støy, K. (2006). Using cellular automata and gradients to control self-reconfiguration. Robotics and Autonomous Systems, 54, 135–141.CrossRefGoogle Scholar
  48. Suh, J. W., Homans, S. B., & Yim, M. (2002). Telecubes: Mechanical design of a module for self-reconfigurable robotics. In Proceedings of the IEEE international conference on robotics and automation (ICRA), pp. 4095–4101.Google Scholar
  49. Terada, Y., & Murata, S. (2008). Automatic modular assembly system and its distributed control. The International Journal of Robotics Research, 27(3–4), 445–462.CrossRefGoogle Scholar
  50. Tomita, K., Murata, S., Kurokawa, H., Yoshida, E., & Kokaji, S. (1999). Self-assembly and self-repair method for a distributed mechanical system. IEEE Transactions on Robotics and Automation, 15(6), 1035–1045.CrossRefGoogle Scholar
  51. Ünsal, C., Kiliççöte, H., & Khosla, P. K. (1999). I(ces)-cubes: A modular self-reconfigurable bipartite robotic system. In Proceedings of SPIE, sensor fusion and decentralized control in robotic systems II, pp. 258–269.Google Scholar
  52. Vassilvitskii, S., Yim, M., & Suh, J. (2002). A complete, local and parallel reconfiguration algorithm for cube style modular robots. In Proceedings of the IEEE international conference on robotics and automation (ICRA), pp. 117–122.Google Scholar
  53. Wallner, R. (2009). A system of autonomously self-reconfigurable agents. Degree thesis, Institute for Software Technology, Graz University of Technology, Graz, Austria.Google Scholar
  54. Walter, J. E., Tsai, E. M., & Amato, N. M. (2005). Algorithms for fast concurrent reconfiguration of hexagonal metamorphic robots. IEEE Transactions on Robotics, 21(4), 621–631.CrossRefGoogle Scholar
  55. Walter, J. E., Welch, J. L., & Amato, N. M. (2004). Distributed reconfiguration of metamorphic robot chains. Distributed Computing, 17, 171–189.CrossRefGoogle Scholar
  56. White, P. J., Kopanski, K., & Lipson, H. (2004). Stochastic self-reconfigurable cellular robotics. In Proceedings of the IEEE international conference on robotics and automation (ICRA), 3, 2888–2893.Google Scholar
  57. Yim, M., Duff, D. G., & Roufas, K. D. (2000). Polybot: a modular reconfigurable robot. In Proceedings of the IEEE international conference on robotics and automation (ICRA), pp. 514–520.Google Scholar
  58. Yim, M., Lamping, J., Mao, E., & Chase, J. G. (1997). Rhombic dodecahedron shape for self-assembling robots. Technical report, Xerox PARC SPL TechReport P9710777.Google Scholar
  59. Yim, M., Shen, W.-M., Salemi, B., Rus, D., Moll, M., Lipson, H., et al. (2007). Modular self-reconfigurable robots systems: Challenges and opportunities for the future. IEEE Robotics and Automation Magazine, 14(1), 43–52.CrossRefGoogle Scholar
  60. Yim, M., Zhang, Y., Lamping, J., & Mao, E. (2001). Distributed control for 3D shape metamorphosis. Autonomous Robots, 10(1), 41–56.CrossRefzbMATHGoogle Scholar
  61. Yoshida, E., Kokaji, S., Murata, S., Tomita, K., & Kurokawa, H. (2000). Miniaturization of self-reconfigurable robotic system using shape memory alloy actuators. Journal of Robotics and Mechatronics, 12(2), 96–102.Google Scholar
  62. Zhang, H., González-Gómez, J., Xie, Z., Cheng, S., & Zhang, J. (2008). Development of a low-cost flexible modular robot GZ-I. In Proceedings of the IEEE/ASME international conference on advanced intelligent mechatronics, pp. 223–228.Google Scholar
  63. Zykov, V., Chan, A., & Lipson, H. (2007). Molecubes: An open-source modular robotics kit. In Proceedings of IROS-2007 self-reconfigurable robotics workshop.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Ferran Hurtado
    • 1
  • Enrique Molina
    • 1
  • Suneeta Ramaswami
    • 2
  • Vera Sacristán
    • 1
    Email author
  1. 1.Departament de Matemàtica Aplicada IIUniversitat Politècnica de CatalunyaBarcelonaSpain
  2. 2.Department of Computer ScienceRutgers UniversityCamdenUSA

Personalised recommendations