Skip to main content

Model-predictive asset guarding by team of autonomous surface vehicles in environment with civilian boats

Abstract

In this paper, we present a contract-based, decentralized planning approach for a team of autonomous unmanned surface vehicles (USV) to patrol and guard an asset in an environment with hostile boats and civilian traffic. The USVs in the team have to cooperatively deal with the uncertainty about which boats pose an actual threat and distribute themselves around the asset to optimize their guarding opportunities. The developed planner incorporates a contract-based algorithm for allocating tasks to the USVs through forward simulating the mission and assigning estimated utilities to candidate task allocation plans. The task allocation process uses a form of marginal cost-based contracting that allows decentralized, cooperative task negotiation among neighboring agents. The task allocation plans are realized through a corresponding set of low-level behaviors. In this paper, we demonstrate the planner using two mission scenarios. However, the planner is general enough to be used for a variety of scenarios with mission-specific tasks and behaviors. We provide detailed analysis of simulation results and discuss the impact of communication interruptions, unreliable sensor data, and simulation inaccuracies on the performance of the planner.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

References

  1. Bertaska, I. R., Alvarez, J., Sinisterra, A. J., von Ellenrieder, K., Dhanak, M., Shah, B. C., et al. (2013). Experimental evaluation of approach behavior for autonomous surface vehicles. In 6th Annual Dynamic Systems and Control Conference (DSCC ’13) Stanford University, Palo Alto. October 21–23.

  2. Bošanský, B., Lisý, V., Jakob, M., & Pěchouček, M. (2011). Computing time-dependent policies for patrolling games with mobile targets. In 10th International Conference on Autonomous Agents and Multiagent Systems (AAMAS’11).

  3. Corfield, S.J., & Young, J.M., (2006). Unmanned surface vehicles-game changing technology for naval operations. In Advances in unmanned arine vehicles (pp. 311–328). London: Institution of Engineering and Technology.

  4. Dias, M.B. (2004). Traderbots: A new paradigm for robust and efficient multirobot coordination in dynamic environments. PhD thesis, Carnegie Mellon University.

  5. Dias, M. B., Zlot, R., Kalra, N., & Stentz, A. (2006). Market-based multirobot coordination: A survey and analysis. Proceedings of the IEEE, 94(7), 1257–1270.

    Article  Google Scholar 

  6. Fang, F., Jiang, A.X., & Tambe, M. (2013). Designing optimal patrol strategy for protecting moving targets with multiple mobile resources. In International Workshop on Optimisation in Multi-Agent Systems (OPTMAS).

  7. Gerkey, B. P., & Matarić, M. J. (2002). Sold!: Auction methods for multirobot coordination. IEEE Transactions on Robotics and Automation, 18(5), 758–768.

    Article  Google Scholar 

  8. Gerkey, B. P., & Matarić, M. J. (2004). A formal analysis and taxonomy of task allocation in multi-robot systems. The International Journal of Robotics Research, 23(9), 939–954.

    Article  Google Scholar 

  9. Holland, J. H. (1992). Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence. Cambridge, MA, USA: MIT Press.

    Google Scholar 

  10. Jakob, M., Vaněk, O., Hrstka, O., & Pěchouček, M. (2012). Agents vs. pirates: multi-agent simulation and optimization to fight maritime piracy. In 11th International Conference on Autonomous Agents and Multiagent Systems (AAMAS’12) (pp. 37–44). International Foundation for Autonomous Agents and Multiagent Systems.

  11. Kalra, N., Ferguson, D., & Stentz, A. (2005). Hoplites: A market-based framework for planned tight coordination in multirobot teams. In IEEE International Conference on Robotics and Automation (ICRA’05) (pp. 1170–1177). IEEE.

  12. Mosteo, A. R., & Montano, L. (2010). A survey of multi-robot task allocation. Instituto de Investigación en Ingeniería de Aragón.

  13. Parker, L. E. (2008). Multiple mobile robot systems. In Springer handbook of robotics (pp. 921–941). Berlin: Springer.

  14. Portugal, D., & Rocha, R. (2011). A survey on multi-robot patrolling algorithms. In Technological Innovation for Sustainability (pp. 139–146).

  15. Portugal, D., & Rocha, R.P. (2011). On the performance and scalability of multi-robot patrolling algorithms. In IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR) (pp. 50–55). IEEE.

  16. Raboin, E., Švec, P., Nau, D. S., & Gupta, S. K. (2013). Model-predictive target defense by team of unmanned surface vehicles operating in uncertain environments. In IEEE International Conference on Robotics and Automation (ICRA’13).

  17. Sandholm, T. (1998). Contract types for satisficing task allocation. In Proceedings of the AAAI spring symposium: Satisficing models (pp. 23–25).

  18. Shieh, E.A., An, B., Yang, R., Tambe, M., Baldwin, C., DiRenzo, J., Maule, B., & Meyer, G. (2012). Protect: An application of computational game theory for the security of the ports of the united states. In AAAI Conference on Artificial Intelligence.

  19. Shoham, Y., & Leyton-Brown, K. (2010). Multiagent systems: Algorithmic, game-theoretic, and logical foundations. Cambridge: Cambridge University Press.

    Google Scholar 

  20. Simetti, E., Turetta, A., Casalino, G., Storti, E., & Cresta, M. (2010). Protecting assets within a civilian harbour through the use of a team of USVs: Interception of possible menaces. OCEANS.

  21. Simmons, R., Apfelbaum, D., Fox, D., Goldman, R.P., Haigh, K.Z., Musliner, D.J., Pelican, M., & Thrun, S. (2000). Coordinated deployment of multiple, heterogeneous robots. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (volume 3, pp. 2254–2260). IEEE.

  22. Smith, R. G. (1980). The contract net protocol: high-level communication and control in a distributed problem solver. IEEE Transactions on Computers, 100(12), 1104–1113.

    Article  Google Scholar 

  23. Švec, P., & Gupta, S. K. (2012). Automated synthesis of action selection policies for unmanned vehicles operating in adverse environments. Autonomous Robots, 32(2), 149–164.

    Article  Google Scholar 

  24. Švec, P., Schwartz, M., Thakur, A., & Gupta, S. K. (2011). Trajectory planning with look-ahead for unmanned sea surface vehicles to handle environmental disturbances. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’11).

  25. Švec, P., Shah, B. C., Bertaska, I. R., Alvarez, J., Sinisterra, A. J., von Ellenrieder, K., et al. (2013). Dynamics-aware target following for an autonomous surface vehicle operating under COLREGs in civilian traffic. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’13) Tokyo. November 3–8.

  26. Švec, P., Thakur, A., & Gupta. S. K. (2012). USV trajectory planning for time varying motion goal in an environment with obstacles. In ASME 2012 International Design Engineering Technical Conferences (IDETC) & Computers and Information in Engineering Conference (CIE).

  27. Švec, P., Thakur, A., Shah, B. C., & Gupta, S. K. (2013). Target following with motion prediction for unmanned surface vehicle operating in cluttered environments. Autonomous Robots, 2013. Retrived for publication. doi:10.1007/s10514-013-9370-z.

  28. Tang, F., & Parker, L. E. (2007). A complete methodology for generating multi-robot task solutions using asymtre-d and market-based task allocation. In IEEE International Conference on Robotics and Automation (ICRA’07) (pp. 3351–3358).

  29. Thakur, A., & Gupta, S. K. (2011). Real-time dynamics simulation of unmanned sea surface vehicle for virtual environments. Journal of Computing and Information Science in Engineering, 11(3), 031005.

    Article  Google Scholar 

  30. Thakur, A., Švec, P., & Gupta, S. K. (2012). Gpu based generation of state transition models using simulations for unmanned surface vehicle trajectory planning. In Robotics and Autonomous Systems.

  31. Vanek, O., Bosansky, B., Jakob, M., Lisy, V., & Pechoucek. M. (2012). Extending security games to defenders with constrained mobility. In Proceedings of AAAI Spring Symposium GTSSH.

  32. Zhang, Y., & Meng, Y. (2010). A decentralized multi-robot system for intruder detection in security defense. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’10) (pp. 5563–5568). IEEE.

  33. Zlot, R., & Stentz, A. (2006). Market-based multirobot coordination for complex tasks. The International Journal of Robotics Research, 25(1), 73–101.

    Article  Google Scholar 

Download references

Acknowledgments

This research has been supported by ONR N00014-10-1-0585, N00014-12-1-0494, N00014-12-1-0430, N00014-13-1-0597, and ARO W911NF-12-1-0471 and W911NF-11-1-0344 grants. The opinions expressed in this paper are those of the authors and do not necessarily reflect opinions of the sponsors.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Satyandra K. Gupta.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 138864 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Raboin, E., Švec, P., Nau, D.S. et al. Model-predictive asset guarding by team of autonomous surface vehicles in environment with civilian boats. Auton Robot 38, 261–282 (2015). https://doi.org/10.1007/s10514-014-9409-9

Download citation

Keywords

  • Decentralized planning
  • Task allocation
  • Unmanned vehicles
  • Unmanned surface vehicles