Skip to main content
Log in

Feature-based map merging with dynamic consensus on information increments

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

We study the problem of feature-based map merging in robot networks. Along its operation, each robot observes the environment and builds and maintains a local map. Simultaneously, each robot communicates and computes the global map of the environment. The communication between the robots is range-limited. Our contributions are the proposal and careful study of the properties of an algorithm that considers separately robot poses and features positions, and that reaches consensus on the latest global map using the map increments between the previous and the current time steps. We give proofs of unbiasedness and consistency of this global map for all the robots, at each iteration. Our algorithm is fully distributed and does not rely on any particular communication topology. Under mild connectivity conditions on the communication graph, our merging algorithm asymptotically converges to the global map. The proposed approach has been experimentally validated using real RGB-D images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. e.g., \(\mathtt szr =3\) for planar robot poses (position \((x,y)\) and orientation \(\theta \)); \(\mathtt szf =2\) or \(\mathtt szf =3\) for respectively 2D or 3D environments.

  2. e.g., only the last pose (\(r^k_i=1\)), the full robot trajectory, or a subset of the trajectory.

  3. \((\mathcal {R}^k_i + \mathcal {M})^2\) is a worst case cost for the information matrices; in practical applications, a better performance can be achieved by taking advantage of their sparse structure. E.g., for full robot trajectories approaches, it can be order \((\mathcal {M} + (l+1) \mathcal {R}^k_i)\), where \(l\) is the average number of features observed from each robot pose.

References

  • Alriksson, P., & Rantzer, A. (July 2006). Distributed Kalman filtering using weighted averaging. In International Symposium on Mathematical Theory of Networks and Systems. Kyoto.

  • Aragues, R., Carlone, L., Calafiore, G., & Sagues, C. (May 2011). Multi-agent localization from noisy relative pose measurements. In IEEE International Conference on Robotics and Automation (pp. 364–369). Shanghai.

  • Aragues, R., Cortes, J., & Sagues, C. (2011). Distributed consensus algorithms for merging feature-based maps with limited communication. Robotics and Autonomous Systems, 59(3–4), 163–180.

    Article  Google Scholar 

  • Aragues, R., Cortes, J., & Sagues, C. (2012). Distributed consensus on robot networks for dynamically merging feature-based maps. IEEE Transactions on Robotics, 28(4), 840–854.

  • Aragues, R., Cortes, J., & Sagues, C. (July 2013). Distributed map merging with consensus on the common part. European Control Conference (pp. 736–741). Switzerland: Zurich.

  • Aragues, R., Montijano, E., & Sagues, C. (June 2010). Consistent data association in multi-robot systems with limited communications. Robotics: Science and Systems (pp. 97–104). Spain: Zaragoza.

  • Aragues, R., Sagues, C., & Mezouar, Y. (May 2013). Feature-based map merging with dynamic consensus on information increments. In IEEE International Conference on Robotics and Automation (pp. 2710–2715). Karlsruhe.

  • Aragues, R., Shi, G., Dimarogonas, D. V., Sagues, C., & Johansson, K. H. (June 2012). Distributed algebraic connectivity estimation for adaptive event-triggered consensus. American Control Conference (pp. 32–37). Canada: Montreal.

  • Bar-Shalom, Y., Li, X. R., & Kirubarajan, T. (2004). Estimation with applications to tracking and navigation: Theory algorithms and software. New York: John Wiley & Sons.

  • Calafiore, G., & Abrate, F. (2009). Distributed linear estimation over sensor networks. International Journal of Control, 82(5), 868–882.

    Article  MATH  MathSciNet  Google Scholar 

  • Carli, R., Chiuso, A., Schenato, L., & Zampieri, S. (2008). Distributed Kalman filtering based on consensus strategies. IEEE Journal on Selected Areas in Communications, 26(4), 622–633.

    Article  Google Scholar 

  • Casbeer, D. W., & Beard, R. (June 2009). Distributed information filtering using consensus filters. American Control Conference (pp. 1882–1887). USA: St. Louis.

  • Cunningham, A., Indelman, V., & Dellaert, F. (May 2013). DDF-SAM 2.0: Consistent distributed smoothing and mapping. In IEEE International Conference on Robotics and Automation (pp. 5220–5227). Karlsruhe.

  • Cunningham, A., Wurm, K. M., Burgard, W., & Dellaert, F. (May 2012). Fully distributed scalable smoothing and mapping with robust multi-robot data association. In IEEE International Conference on Robotics and Automation (pp. 1093–1100). St. Paul.

  • Dissanayake, G., Newman, P., Clark, S., Durrant-Whyte, H. F., & Csorba, M. (2001). A solution to the simultaneous localization and map building (SLAM) problem. IEEE Transactions on Robotics and Automation, 17(3), 229–241.

    Article  Google Scholar 

  • Durham, J. W., Franchi, A., & Bullo, F. (2012). Distributed pursuit-evasion without mapping or global localization via local frontier. Autonomous Robots, 32(1), 81–95.

  • Franceschelli, M., & Gasparri, A. (May 2010). On agreement problems with gossip algorithms in absence of common reference frames. In IEEE International Conference on Robotics and Automation (pp. 4481–4486). Anchorage.

  • Freeman, R. A., Yang, P., & Lynch, K. M. (December 2006). Stability and convergence properties of dynamic average consensus estimators. In IEEE Conference on Decision and Control (pp. 398–403). San Diego.

  • Gasparri, A., Fiorini, F., Di Rocco, M., & Panzieri, S. (2012). A networked transferable belief model approach for distributed data aggregation. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 42(2), 391–405.

  • Grime, S., & Durrant-Whyte, H. F. (1994). Data fusion in decentralized sensor networks. Control Engineering Practice, 2(5), 849–863.

    Article  Google Scholar 

  • Guerrero, J. J., Murillo, A. C., & Sagues, C. (2008). Localization and matching using the planar trifocal tensor with bearing-only data. IEEE Transactions on Robotics, 24(2), 494–501.

    Article  Google Scholar 

  • Horn, R. A., & Johnson, C. R. (1985). Matrix Analysis. Cambridge, UK: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Howard, A. (2006). Multi-robot simultaneous localization and mapping using particle filters. International Journal of Robotics Research, 25(12), 1243–1256.

    Article  Google Scholar 

  • Huang, G. P., Trawny, N., Mourikis, A. I., & Roumeliotis, S. I. (June 2009). On the consistency of multi-robot cooperative localization. Robotics: Science and Systems (pp. 65–72). WA, USA: Seattle.

  • Huang, G. P., Trawny, N., Mourikis, A. I., & Roumeliotis, S. I. (2011). Observability-based consistent ekf estimators for multi-robot cooperative localization. Autonomous Robots, 30(1), 99–122.

    Article  Google Scholar 

  • Huang, S., Wang, Z., Dissanayake, G., & Frese, U. (2009). Iterated d-slam map joining: Evaluating its performance in terms of consistency, accuracy and efficiency. Autonomous Robots, 27(4), 409–429.

    Article  Google Scholar 

  • Indelman, V., Nelson, E., Michael, N., & Dellaert, F. (May 2014). Multi-robot pose graph localization and data association from unknown initial relative poses via expectation maximization. In IEEE International Conference on Robotics and Automation (pp. 593–600). Hong Kong.

  • Julier, S., & Uhlmann, J. K. (2001). General decentralised data fusion with covariance intersection (CI). In D. L. Hall & J. Llinas (Eds.), Handbook of Multisensor Data Fusion. Vatican: CRC Press.

    Google Scholar 

  • Kamal, A. T., Ding, C., Song, B., Farrell, J. A., & Roy-Chowdhury, A. K. (December 2011). A generalized kalman consensus filter for wide-area video networks. In IEEE Conference on Decision and Control (pp. 7863–7869). Orlando.

  • Knuth, J., & Barooah, P. (May 2012). Collaborative 3D localization of robots from relative pose measurements using gradient descent on manifolds. In IEEE International Conference on Robotics and Automation (pp. 1101–1106). St. Paul.

  • Knuth, J., & Barooah, P. (May 2013). Collaborative localization with heterogeneous inter-robot measurements by riemannian optimization. In IEEE International Conference on Robotics and Automation (pp. 1526–1531). Karlsruhe.

  • Leshem, A., & Tong, L. (2005). Estimating sensor population via probabilistic sequential polling. IEEE Signal Processing Letters, 12(5), 395–398.

    Article  Google Scholar 

  • Leung, K. Y. K., Barfoot, T. D., & Liu, H. H. T. (October 2010). Decentralized cooperative simultaneous localization and mapping for dynamic and sparse robot networks. In IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 3554–3561). Taipei.

  • Li, T., & Zhang, J. F. (2010). Consensus conditions on multi-agent systems with time-varying topologies and stochastic communication noises. IEEE Transactions on Automatic Control, 55(9), 2043–2057.

    Article  Google Scholar 

  • Lowe, D. G. (1999). Object recognition from local scale-invariant features. In IEEE International Conference on Computer Vision (pp. 1150–1157).

  • Lynch, K. M., Schwartz, I. B., Yang, P., & Freeman, R. A. (2008). Decentralized environmental modeling by mobile sensor networks. IEEE Transactions on Robotics, 24(3), 710–724.

    Article  Google Scholar 

  • Montijano, E., Aragues, R., & Sagues, C. (2013). Distributed data association in robotic networks with cameras and limited communications. IEEE Transactions on Robotics, 29(6), 1408–1423.

    Article  Google Scholar 

  • Navarro, I., & Matía, F. (2012). Distributed orientation agreement in a group of robots. Autonomous Robots, 33(4), 445–465.

  • Nebot, E. M., Bozorg, M., & Durrant-Whyte, H. F. (1999). Decentralized architecture for asynchronous sensors. Autonomous Robots, 6(2), 147–164.

    Article  Google Scholar 

  • Nguyen, C.V., Izadi, S., & Lovell, D. (October 2012). Modeling kinect sensor noise for improved 3d reconstruction and tracking. In International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission (pp. 524–530). Zurich.

  • Olfati-Saber, R. (2005). Distributed Kalman filter with embedded consensus filters. In IEEE Conference on Decision and Control (pp. 8179–8184). Sevilla.

  • Olfati-Saber, R. (December 2007). Distributed Kalman filtering for sensor networks. In IEEE Conference on Decision and Control (pp. 5492–5498). New Orleans.

  • Olfati-Saber, R., & Shamma, J. S. (2005). Consensus filters for sensor networks and distributed sensor fusion. In IEEE Conference on Decision and Control (pp. 6698–6703). Sevilla.

  • Paz, L. M., Tardos, J. D., & Neira, J. (2008). Divide and conquer: EKF SLAM in \(o(n)\). IEEE Transactions on Robotics, 24(5), 1107–1120.

    Article  Google Scholar 

  • Ren, W. (2007). Consensus seeking in multi-vehicle systems with a time-varying reference state. In American Control Conference (pp. 717–722). New York.

  • Ren, W., Beard, R. W., & Atkins, E. M. (2007). Information consensus in multivehicle cooperative control. IEEE Control Systems Magazine, 27(2), 71–82.

    Article  Google Scholar 

  • Sandell, N. F., & Olfati-Saber, R. (December 2008). Distributed data association for multi-target tracking in sensor networks. In IEEE Conference on Decision and Control (pp. 1085–1090). Cancun.

  • Spanos, D. P., Olfati-Saber, R., & Murray, R. M. (2005). Dynamic consensus on mobile networks. In ”IFAC World Congress”: Prague, Czech Republic.

    Google Scholar 

  • Sun, Y. G., Wang, L., & Xie, G. (2008). Average consensus in networks of dynamic agents with switching topologies and multiple time-varying delays. Systems and Control Letters, 57(2), 175–183.

    Article  MATH  MathSciNet  Google Scholar 

  • Thrun, S., Liu, Y., Koller, D., Ng, A., & Durrant-Whyte, H. (2004). Simultaneous localisation and mapping with sparse extended information filters. International Journal of Robotics Research, 23(7–8), 693–716.

    Article  Google Scholar 

  • Trawny, N., Zhou, X. S., Zhou, K. X., & Roumeliotis, S. I. (2010). Inter-robot transformations in 3-d. IEEE Transactions on Robotics, 26(2), 226–243.

    Article  Google Scholar 

  • Tsokas, N. A., & Kyriakopoulos, K. J. (2012). Multi-robot multiple hypothesis tracking for pedestrian tracking. Autonomous Robots, 32(1), 63–79.

  • Utete, S., & Durrant-Whyte, H. F. (June 1994). Routing for reliability in decentralised sensing networks. American Control Conference, 2, 2268–2272.

  • Varagnolo, D., Pillonetto, G., & Schenato, L. (2010). Distributed statistical estimation of the number of nodes in sensor networks. In IEEE Conference on Decision and Control (pp. 1498–1503). Atlanta.

  • Vincent, R., Fox, D., Ko, J., Konolige, K., Limketkai, B., Morisset, B., et al. (2008). Distributed multirobot exploration, mapping, and task allocation. Annals of Mathematics and Artificial Intelligence, 52(1), 229–255.

    Article  MATH  MathSciNet  Google Scholar 

  • Williams, S. B., & Durrant-Whyte, H. (May 2002). Towards multi-vehicle simultaneous localisation and mapping. In IEEE International Conference on Robotics and Automation (pp. 2743–2748). Washington.

  • Xiao, L., Boyd, S., & Lall, S. (April 2006). A space-time diffusion scheme for peer-to-peer least-square estimation. Symposium on Information Processing of Sensor Networks (IPSN) (pp. 168–176). TN, USA: Nashville.

  • Zhou, X. S., & Roumeliotis, S. I. (2008). Robot-to-robot relative pose estimation from range measurements. IEEE Transactions on Robotics, 24(6), 1379–1393.

    Article  Google Scholar 

  • Zhu, M., & Martınez, S. (2010). Discrete-time dynamic average consensus. Automatica, 46(2), 322–329.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from the French program investissement d’avenir managed by the National Research Agency (ANR), the European Commission (Auvergne FEDER funds) and the Région Auvergne in the framework of the LabEx IMobS3 (ANR-10-LABX-16-01) and by projects from the Spanish Government DPI2009-08126, and DPI2012-32100.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosario Aragues.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aragues, R., Sagues, C. & Mezouar, Y. Feature-based map merging with dynamic consensus on information increments. Auton Robot 38, 243–259 (2015). https://doi.org/10.1007/s10514-014-9406-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-014-9406-z

Keywords

Navigation