Skip to main content

On hybrid modeling and control of a multi-propeller multifunction aerial robot with flying-walking locomotion

Abstract

Flying-walking locomotion is widely adopted by birds. It increases the agility and activities of birds, but has not been reported in the robotics research area. This paper is trying to address the problem of flying-walking locomotion with a multi-propeller multifunction aerial robot (MMAR). The dynamics of hybrid flying-walking locomotion is rather complex since it needs to consider the modeling of aerial robots contacting with the environment. By dividing the flying-walking locomotion into several motion modes, hybrid modeling framework is employed to model the dynamics of the overall flying-walking locomotion maneuver. Contact dynamics between the robot and the ground in the overall maneuver is derived from the constrained Lagrangian. Furthermore, the models of different modes are analyzed for the control purposes. Based on the dynamic model, an optimal planning algorithm is proposed to minimize the interaction between the legs and main-body of MMAR during the motion. Several composite controllers are designed to stabilize the motion of the main-body and the motion of the legs in different modes. Such controllers are designed using trajectory linearization control approach and computed-torque method. Simulation tests are presented to show the feasibility of proposed flying-walking locomotion.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

References

  • Cabecinhas, D., Naldi, R., Marconi, L., Silvestre, C., & Cunha, R. (2010). Robust take-off and landing for a quadrotor vehicle. In Proceedings of the IEEE international conference on robotics and automation (pp. 1630–1635). Anchorage, Alaska, USA.

  • Cabecinhas, D., Naldi, R., Marconi, L., Silvestre, C., & Cunha, R. (2012). Robust take-off for a quadrotor vehicle. IEEE Transactions on Robotics, 28(3), 734–742.

    Article  Google Scholar 

  • Cowling, I. D., Yakimenko, O. A., Whidborne, J. F., & Cooke, A. K. (2010). Direct method based control system for an autonomous quadrotor. Journal of Intelligent Robotic Systems, 60(2), 285–316.

    Article  MATH  Google Scholar 

  • Ding, X., & Yu, Y. (2012). Dynamic analysis, optimal planning and composite control for aerial arm-operating with a multi-propeller multifunction aerial robot. In Proceedings of the IEEE international conference on mechatronics and automation (pp. 420–427). Chengdu, China.

  • Ding, X., & Yu, Y. (2013). Motion planning and stabilization control of a multi-propeller multifunction aerial robot. IEEE/ASME Transactions on Mechatronics, 18(2), 645–656.

    Article  MathSciNet  Google Scholar 

  • Ding, X., Yu, Y., & Zhu, J. J. (2011). Trajectory linearization tracking control for dynamics of a multi-propeller and multifunction aerial robot—MMAR. In Proceedings of the IEEE international conference on robotics and automation (pp. 757–762). Shanghai, China.

  • Ghadiok, V. (2011). Autonomous aerial manipulations using a quadrotor. Master’s thesis, Utah State University, Logan, Utah.

  • Ghadiok, V., Goldin, J., & Ren, W. (2011). Autonomous indoor aerial gripping using a quadrotor. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (pp. 4645–4651). San Francisco, CA.

  • Gillula, J. H., Huang, H., Vitus, M. P., & Tomlin, C. J. (2010). Design of guaranteed safe maneuvers using reachable sets: Autonomous quadrotor aerobatics in theory and practice. In Proceedings of the IEEE international conference on robotics and automation (pp. 1649–1654). Anchorage, Alaska, USA.

  • Goebel, R., Sanfelice, R. G., & Teel, A. R. (2009). Hybrid dynamical systems. IEEE Control Systems Magazine, 29(2), 28–93.

    Article  MathSciNet  Google Scholar 

  • Goldstein, H. (1980). Classical mechanics. Addison-Wesley.

  • Hehn, M., & D’Andrea, R. (2011). A flying inverted pendulum. In Proceedings of the IEEE international conference on robotics and automation (pp. 763–770). Shanghai, China.

  • Hugel, V., Hackert, R., & Abourachid, A. (2011). Kinematic modeling of bird locomotion from experimental data. IEEE Transactions on Robotics, 27(2), 185–200.

    Article  Google Scholar 

  • Hurmuzlu, Y. (1993). Dynamics of biped gait: Part I—Objective functions and contact event of a planar five-link biped. Journal of Applied Mechanics, 60(2), 331–336.

    Article  Google Scholar 

  • Jimenez-Cano, A. J., Martin, G. H., Ollero, A., & Cano, R. (2013). Control of an aerial robot with multi-link arm for assembly tasks. In Proceedings of the IEEE international conference on robotics and automation (pp. 4916–4921). Karlsruhe, Germany.

  • Kim, J., Chung, W. K., & Yuh, J. (2003). Dynamic analysis and two-time scale control for underwater vehicle-manipulator systems. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (pp. 577–582). Las Vegas, Nevada.

  • Kobilarov, M. (2013). Trajectory control of a class of articulated aerial robots. In Proceedings of the international conference on unmanned aircraft systems (pp. 958–965). Grand Hyatt Atlanta, Atlanta, GA.

  • Liljeback, P., Pettersen, K. Y., Stavdahl, O. & Gravdahl, J. T. (2010). Hybrid modelling and control of obstacle-aided snake robot locomotion. IEEE Transactions on Robotics, 26(5), 781–799.

  • Liu, Y., & Zhu, J. J. (2007a). Regular perturbation analysis for trajectory linearization control. In: Proceedings of the American control conference (pp. 3053–3058). New York, USA.

  • Liu, Y., & Zhu, J. J. (2007b). Singular perturbation analysis for trajectory linearization control. In Proceedings of the American control conference (pp. 3047–3052). New York, USA.

  • Lupashin, S., Schollig, A., Sherback, M., & D’Andrea, R.(2010). A simple learning strategy for high-speed quadrocopter multi-flips. In Proceedings of the IEEE international conference on robotics and automation (pp. 1642–1648). Anchorage, Alaska, USA.

  • Marconi, L., Naldi, R., Gentili, L. (2009). A control framework for robust practical tracking of hybrid automata. In Proceedings of the IEEE conference on decision and control (pp. 661–666). Shanghai, China.

  • Marconi, L., Naldi, R., & Gentili, L. (2011). Modelling and control of a flying robot interacting with the environment. Automatica, 47(12), 2571–2583.

    Article  MATH  MathSciNet  Google Scholar 

  • Mellinger, D., Lindsey, Q., Shomin, M., & Kumar, V. (2011). Design, modeling, estimation and control for aerial grasping and manipulation. In Proceedings of the IEEE/international conference on intelligent robots and systems (pp. 2668–2673). San Francisco, CA, USA.

  • Mellinger, D., Michael, N., Shomin, M., & Kumar, V. (2011). Recent advances in quadrotor capabilities. In Proceedings of the IEEE international conference on robotics and automation (pp. 2964–2965). Shanghai, China.

  • Mellinger, D., Shomin, M., Michael, N., & Kumar, V.(2010). Cooperative grasping and transport using multiple quadrotors. In International symposium on distributed autonomous systems, Lausanne, Switzerland

  • Michael, N., Fink, J., & Kumar, V. (2011). Cooperative manipulation and transportation with aerial robots. Autonomous Robots, 30(1), 73–86.

    Article  Google Scholar 

  • Micklet, M. C., Huang, R., & Zhu, J. J. (2004). Unstable, nonminimum phase, nonlinear tracking by trajectory linearization control. In Proceedings of the IEEE conference on control applications (pp. 812–818). Taipei, Taiwan.

  • Mu, X., & Wu, Q. (2003). A complete dynamic model of five-link bipedal walking. In: Proceedings of the American control conference (pp. 4–6). Denver, Colorado.

  • Muller, M., Lupashin, S., & D’Andrea, R. (2011). Quadrocopter ball juggling. In Proceedings of the IEEE/RSJ international conference on intellegent robotic systems (pp. 25–30). San Francisco, CA, USA.

  • Orsag, M., Korpela, C., Pekala, M., & Oh, P. (2013). Stability control in aerial manipulation. In: Proceedings of the American control conference (pp. 5581–5586). Washington, DC, USA.

  • Schollig, A., Augugliaro, F., Lupashin, S., & D’Andrea, R.(2010). Synchronizing the motion of a quadrocopter to music. In Proceedings of the IEEE international conference on robotics and automation (pp. 3355–3360). Anchorage, Alaska, USA.

  • Slotine, J. J. E., & Li, W.(1991). Applied nonlinear control. Prentice Hall.

  • Tzafestas, S., Raibert, M., & Tzafestas, C. (1996). Robust sliding-mode control applied to a 5-link biped robot. Journal of Intelligent Robotic Systems, 15, 67–133.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (NSFC) under Grant 50975008, by the National Science Fund for Distinguished Young Scholars of China under Grant 51125020, and by the Innovation Foundation of BUAA for PhD Graduates under Grant YWF-12-RBYJ-016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xilun Ding.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Ding, X. On hybrid modeling and control of a multi-propeller multifunction aerial robot with flying-walking locomotion. Auton Robot 38, 225–242 (2015). https://doi.org/10.1007/s10514-014-9405-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-014-9405-0

Keywords

  • Hybrid model
  • Robot dynamics
  • Optimal planning
  • Trajectory linearization control
  • Aerial robot