Autonomous Robots

, Volume 38, Issue 2, pp 179–191 | Cite as

Coordinated landing of a quadrotor on a skid-steered ground vehicle in the presence of time delays

  • John M. Daly
  • Yan Ma
  • Steven L. WaslanderEmail author


This work presents a control technique to autonomously coordinate a landing between a quadrotor UAV and a skid-steered UGV. Local controllers to feedback linearize the models are presented, and a joint decentralized controller is developed to coordinate a rendezvous for the two vehicles. The effects of time delays on closed loop stability are examined using a Retarded Functional Differential Equation formulation of the problem, and delay margins are determined for particular closed loop setups. Both simulation and experimental results are presented, which demonstrate the feasibility of this approach for autonomous outdoor coordinated landing.


Mobile robotics Autonomous landing Skid-steered vehicle Quadrotor Time delays 

Supplementary material

Supplementary material 1 (mp4 63271 KB)


  1. Daly, J., Ma, Y., & Waslander, S. (2011). Coordinated landing of a quadrotor on a skid-steered ground vehicle in the presence of time delays. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2011, pp. 4961–4966. IEEE.Google Scholar
  2. Esmailifar, S., & Saghafi, F. (2009). Autonomous unmanned helicopter landing system design for safe touchdown on 6dof moving platform. In: Proceedings of the Fifth International Conference on Autonomic and Autonomous Systems, pp. 245–250. IEEEGoogle Scholar
  3. Gu, K., Kharitonov, V. L., & Chen, J. (2003). Stability of time-delay systems. Boston, New York: Birkhauser.CrossRefzbMATHGoogle Scholar
  4. Hoffmann, G. M., Huang, H., Waslander, S. L., & Tomlin, C. J. (2011). Precision flight control for a multi-vehicle quadrotor helicopter testbed. Control Engineering Practice, 19(9), 1023–1036.CrossRefGoogle Scholar
  5. Kozłowski, K., & Pazderski, D. (2004). Modeling and control of a 4-wheel skid-steering mobile robot. International Journal of Applied Mathematics and Computer Science, 14(4), 477–496.zbMATHMathSciNetGoogle Scholar
  6. Kuipers, J. B. (1999). Quaternions and rotation sequences: A primer with applications to orbits, aerospace, and virtual reality. Princeton, NJ: Princeton university press.zbMATHGoogle Scholar
  7. Lee, D., Jin Kim, H., & Sastry, S. (2009). Feedback linearization vs. adaptive sliding mode control for a quadrotor helicopter. International Journal of Control, Automation and Systems, 7(3), 419–428.CrossRefGoogle Scholar
  8. Li, W., Zhang, T., & Klihnlenz, K. (2011). A vision-guided autonomous quadrotor in an air-ground multi-robot system. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), 2011, pp. 2980–2985. IEEEGoogle Scholar
  9. Mathworks: Matlab aerospace toolbox (2014). Retrieved June 2014, from URL:
  10. Mokhtari, A., Benallegue, A., & Daachi, B. (2005). Robust feedback linearization and \( {GH}\)-\(\infty \) controller for a quadrotor unmanned aerial vehicle. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005, pp. 1198–1203. IEEEGoogle Scholar
  11. Oh, S., Pathak, K., Agrawal, S., Pota, H., & Garratt, M. (2006). Autonomous helicopter landing on a moving platform using a tether. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Orlando, FL, pp. 3960–3965. IEEEGoogle Scholar
  12. Pazderski, D., Kozłowski, K., & Dixon, W. (2004). Tracking and regulation control of a skid steering vehicle. In: Proceedings of the American Nuclear Society Tenth International Topical Meeting on Robotics and Remote Systems, pp. 369–376.Google Scholar
  13. Saripalli, S., & Sukhatme, G. (2006). Landing on a moving target using an autonomous helicopter. In: Field and Service Robotics, pp. 277–286. Springer.Google Scholar
  14. Sastry, S. (1999). Nonlinear systems—analysis, stability, and control. New York: Springer-Verlag Inc.zbMATHGoogle Scholar
  15. Sharaf, A., Rahnejat, H., & King, P. (2008). Analysis of handling characteristics of all-wheel-drive off-road vehicles. International Journal of Heavy Vehicle Systems, 15(1), 89–106.CrossRefGoogle Scholar
  16. Voos, H., & Bou-Ammar, H. (2010). Nonlinear tracking and landing controller for quadrotor aerial robots. In: Proceedings of the IEEE International Conference on Control Applications (CCA), Yokohama, 2010, pp. 2136–2141. IEEEGoogle Scholar
  17. Waslander, S. L. (2013). Unmanned aerial and ground vehicle teams: Recent work and open problems. In: K. Nonami, M. Kartidjo, K. J. Yoon, A. Budiyono (Eds.) Autonomous control systems and vehicles, (pp. 21–36). Tokyo: Springer.Google Scholar
  18. Waslander, S. L. (2014). Sweetgps, an open source carrier-phase differential gps package. Retrieved June 2014, from URL:
  19. Wenzel, K. E., Masselli, A., & Zell, A. (2011). Automatic take off, tracking and landing of a miniature uav on a moving carrier vehicle. Journal of Intelligent & Robotic Systems, 61(1), 221–238.CrossRefGoogle Scholar
  20. Yu, W., Chuy, O., Collins, E., & Hollis, P. (2009). Dynamic modeling of a skid-steered wheeled vehicle with experimental verification. In: Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, pp. 4212–4219. IEEEGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Mechanical and Mechatronics EngineeringUniversity of WaterlooWaterlooCanada

Personalised recommendations