Skip to main content
Log in

A compliant self-adaptive gripper with proprioceptive haptic feedback

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

Grippers and robotic hands are an important field in robotics. Recently, the combination of grasping devices and haptic feedback has been a promising avenue for many applications such as laparoscopic surgery and spatial telemanipulation. This paper presents the work behind a new self-adaptive, a.k.a. underactuated, gripper with a proprioceptive haptic feedback in which the apparent stiffness of the gripper as seen by its actuator is used to estimate contact location. This system combines many technologies and concepts in an integrated mechatronic tool. Among them, underactuated grasping, haptic feedback, compliant joints and a differential seesaw mechanism are used. Following a theoretical modeling of the gripper based on the virtual work principle, the authors present numerical data used to validate this model. Then, a presentation of the practical prototype is given, discussing the sensors, controllers, and mechanical architecture. Finally, the control law and the experimental validation of the haptic feedback are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Backus, S.B., & Dollar, A.M. (2012). Robust, inexpensive resonant frequency based contact detection for robotic manipulators. In IEEE International Conference on Robotics and Automation (pp. 1514–1519). Saint Paul, MN.

  • Begoc, V., Durand, C., Krut, S., Dombre, E., & Pierrot, F. (2006). On the form-closure capability of robotic underactuated hands. In 9th International Conference on Control, Automation, Robotics and Vision (pp. 1–8). Singapore.

  • Birglen, L. (2006). An introduction to the analysis of linkage-driven compliant underactuated fingers. In Proceedings of the ASME IDETC/CIE (pp. 55–63). Philadelphia, PA.

  • Birglen, L. (2009). Type synthesis of linkage-driven self-adaptive fingers. ASME Journal of Mechanisms and Robotics, 1(2), 1–9.

    Google Scholar 

  • Birglen, L. (2010). From flapping wings to underactuated fingers and beyond: A broad look to self-adaptive mechanisms. Mechanical Sciences, 1, 5–12.

    Article  Google Scholar 

  • Birglen, L., Laliberte, T., & Gosselin, C. (2008). Underactuated Robotic Hands. Berlin: Springer.

    MATH  Google Scholar 

  • Boudreault, E., & Gosselin, C. (2006). Design of sub-centimetre underactuated compliant grippers. In Proceedings of the ASME IDETC/CIE (pp. 119–127). Philadelphia, PA.

  • Butterfass, J., Gerbenstein, M., Liu, H., & Hirzinger, G. (2001). Dlr-hand II: Next generation of a dexterous robot hand. In IEEE International Conference on Robotics and Automation (pp. 109–114). Seoul, Korea.

  • Carrozza, M., Suppo, C., Sebastiani, F., Massa, B., Vecchi, F., Lazzarini, R., et al. (2004). The SPRING hand: Development of a self-adaptive prosthesis for restoring natural grasping. Autonomous Robots, 16(2), 125–141.

    Article  Google Scholar 

  • Cavallo, A., Natale, C., Pirozzi, S., Visone, C., & Formisano, A. (2004). Feedback control systems for micropositioning tasks with hysteresis compensation. IEEE Transactions on Magnetics, 40(2), 876 –879.

    Article  Google Scholar 

  • Cruz-Hernandez, J.M., & Hayward, V. (1998). An approach to reduction of hysteresis in smart materials. In IEEE International Conference on Robotics and Automation (pp. 1510–1515). Leuven, Belgium.

  • Dollar, A. M., Jentoft, L. P., Gao, J. H., & Howe, R. D. (2010). Contact sensing and grasping performance of compliant hands. Autonomous Robots, 28(1), 65–75.

    Article  Google Scholar 

  • Doria, M., & Birglen, L. (2009). Design of an underactuated compliant gripper for surgery using nitinol. ASME Journal of Medical Devices, 3, 1–7.

    Article  Google Scholar 

  • Doubler, J. A., & Childress, D. S. (1984). An analysis of extended physiological proprioception as a prosthesis-control technique. Journal of Rehabilitation Research Development, 21(1), 5–18.

    Google Scholar 

  • Dubey, V. N., Crowder, R. M., & Chappell, P. H. (1999). Optimal object grasp using tactile sensors and fuzzy logic. Robotica, 17(6), 685–693.

    Article  Google Scholar 

  • Goethals, P. (2008). Tactile feedback for robot assisted minimally invasive surgery: An overview. In Eurohaptics Conference (pp. 1–81). Madrid, Spain.

  • Hayward, V., & Maclean, K. E. (2007). Do it yourself haptics: Part I. IEEE Robotics Automation Magazine, 14(4), 88–104.

    Article  Google Scholar 

  • Hirose, S., & Umetani, Y. (1978). Development of soft gripper for the versatile robot hand. Mechanism and Machine Theory, 13(3), 351–359.

    Article  Google Scholar 

  • Howard, W. S., & Kumar, V. (1996). On the stability of grasped objects. IEEE Transactions on Robotics and Automation, 12(6), 904–917.

    Article  Google Scholar 

  • Howell, L. L. (2001). Compliant Mechanisms. New York, NY: Wiley.

    Google Scholar 

  • Kern, T. A. (2009). Engineering haptic devices: A beginner’s guide for engineers. Berlin: Springer.

    Book  Google Scholar 

  • Kode, V. R. C., & Cavusogl, M. C. (2007). Design and characterization of a novel hybrid actuator using shape memory alloy and dc micromotor for minimally invasive surgery applications. IEEE/ASME Transactions on Mechatronics, 12(4), 455–464.

    Article  Google Scholar 

  • Kragten, G. A., & Herder, J. L. (2010). The ability of underactuated hands to grasp and hold objects. Mechanism and Machine Theory, 45(3), 408–425.

    Article  MATH  Google Scholar 

  • Kyberd, P. J., Light, C., Chappell, P. H., Nightingale, J. M., Whatley, D., & Evans, M. (2001). The design of anthropomorphic prosthetic hands: A study of the southampton hand. Robotica, 19(6), 593–600.

    Google Scholar 

  • Lin, M. C., & Otaduy, M. A. (2008). Haptic rendering: Foundations, algorithms, and applications. Wellesley, MA: A. K. Peters/CRC.

    Google Scholar 

  • Lobontiu, N. (2003). Compliant mechanisms: Design of flexure hinges. Boca Raton, FL: CRC.

    Google Scholar 

  • Lotti, F., Tiezzi, P., Vassura, G., & Zucchelli, A. (2002). Mechanical structures for robotic hands based on the “compliant mechanism” concept. In 7th ESA Workshop on Advanced Space Technologies for Robotics and Automation (pp. 1–8). Noordwijk, The Netherlands.

  • Lotti, F., Tiezzi, P., Vassura, G., Biagiotti, L., Palli, G., & Melchiorri, C. (2005). Development of ub hand 3: Early results. In IEEE International Conference on Robotics and Automation (pp. 4488–4493). Barcelona, Spain.

  • Luecke, G.R., & Beckman, J.A. (2008). Haptic interactions with under-actuated robots using virtual mechanisms. In IEEE International Conference on Robotics and Automation (pp. 2878–2883). Pasadena, CA.

  • Martin, E., Lussier-Desbiens, A., Laliberte, T., & Gosselin, C.M. (2004). Sarah hand used for space operations on stvf robot. In Proceedings of the International Conference on Intelligent Manipulation and Grasping (pp. 279–284). Genova, Italy.

  • Quennouelle, C., & Gosselin, C. (2010). Quasi-static modelling of compliant mechanisms: Application to a 2-D of underactuated finger. Mechanical Sciences, 2, 73–81.

    Article  Google Scholar 

  • Schostek, S., Schurr, M. O., & Buess, G. F. (2009). Review on aspects of artificial tactile feedback in laparoscopic surgery. Medical Engineering Physics, 31, 887–898.

    Article  Google Scholar 

  • Simpson, D. C. (1974). The choice of control system for the multimovement prosthesis: Extended physiological proprioception. In P. Herberts, R. Kadefors, R. I. Magnusson, & I. Petersen (Eds.), The control of upper-extremity prostheses and orthoses. Springfield, MA: C.C. Thomas.

    Google Scholar 

  • Tholey, G., & Desai, J. P. (2007). A general-purpose 7 dof haptic device: Applications toward robot-assisted surgery. IEEE/ASME Transactions on Mechatronics, 12(6), 662–669.

    Article  Google Scholar 

Download references

Acknowledgments

The support of the Ingenierie de Technologies Interactives en Readaptation (INTER) network is gratefully acknowledged as well as the National Science and Engineering Research Council (NSERC), the Fonds de recherche du Quebec—Nature et Technologies and the Canadian Foundation for Innovation. The authors would like to thank Maxime Blaise for his contribution on the design and fabrication of the prototype.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Belzile.

Appendices

Appendix 1: Kinematic loop-closure equations

$$\begin{aligned} 0&= L_1\cos {\alpha _{k1}}+L_2\cos {\alpha _{k2}}+c\cos {\alpha _{k3}} +b\cos {\alpha _{k4}}\nonumber \\&\quad +a\cos {\alpha _{k5}}-d\cos {\lambda },\end{aligned}$$
(14)
$$\begin{aligned} 0&= L_1\sin {\alpha _{k1}}+L_2\sin {\alpha _{k2}}+c\sin {\alpha _{k3}} +b\sin {\alpha _{k4}}\nonumber \\&\quad +a\sin {\alpha _{k5}}-d\sin {\lambda }, \end{aligned}$$
(15)
$$\begin{aligned} 0&= m\cos ({\psi +\zeta _k\beta _{2}})+h\cos {(\beta _{k1})}-g\cos {\alpha _{k6}}-f,\end{aligned}$$
(16)
$$\begin{aligned} 0&= m\sin ({\psi +\zeta _k\beta _{2}})+h\sin {(\beta _{k1})} -g\sin {\alpha _{k6}}-Y_a,\end{aligned}$$
(17)
$$\begin{aligned} 0&= (\zeta _k +1) f + g \sin (\alpha _{R6}+(\zeta _k+1)\frac{\pi }{4})\nonumber \\&\quad -h \sin (\beta _{R1}+(\zeta _k+1)\frac{\pi }{4})- n \sin (\beta _{2}+(\zeta _k+1)\frac{\pi }{4})\nonumber \\&\quad -\zeta _k h \sin (\beta _{L1}\!+\!(\zeta _k\!+\!1)\frac{\pi }{4})\!+\! \zeta _k g \sin (\alpha _{L6}\!+\!(\zeta _k\!+\!1)\frac{\pi }{4}).\nonumber \\ \end{aligned}$$
(18)

Please note that the gripper is designed to be symmetrical, i.e. all lengths are the same on both sides.

Appendix 2: Virtual work matrices

The virtual work matrices for each side of the gripper are:

$$\begin{aligned} \mathbf M _k&= \begin{bmatrix} \mathbf m _{k1}&\ldots&\mathbf m _{k15} \end{bmatrix}, \end{aligned}$$
(19)
$$\begin{aligned} \mathbf m _{k1}&= \begin{bmatrix} 1&0&0 \end{bmatrix}^T, \end{aligned}$$
(20)
$$\begin{aligned} \mathbf m _{k2}&= \begin{bmatrix} -1&1&0 \end{bmatrix}^T, \end{aligned}$$
(21)
$$\begin{aligned} \mathbf m _{k3}&= \begin{bmatrix} 0&-1&1 \end{bmatrix}^T, \end{aligned}$$
(22)
$$\begin{aligned} \mathbf m _{k4}&= \begin{bmatrix} \frac{\delta \alpha _{k4}}{\delta \alpha _{k1}}&\frac{\delta \alpha _{k4}}{\delta \alpha _{k2}}&\frac{\delta \alpha _{k4}}{\delta \alpha _{k3}}-1 \end{bmatrix}^T, \end{aligned}$$
(23)
$$\begin{aligned} \mathbf m _{k5}&= \begin{bmatrix} \frac{\delta \alpha _{k5}}{\delta \alpha _{k1}} -\frac{\delta \alpha _{k4}}{\delta \alpha _{k1}}\\ \frac{\delta \alpha _{k5}}{\delta \alpha _{k2}} -\frac{\delta \alpha _{k4}}{\delta \alpha _{k2}} \\ \frac{\delta \alpha _{k5}}{\delta \alpha _{k3}} -\frac{\delta \alpha _{k4}}{\delta \alpha _{k3}} \end{bmatrix}, \end{aligned}$$
(24)
$$\begin{aligned} \mathbf m _{k6}&= \begin{bmatrix} \frac{\delta \alpha _{k5}}{\delta \alpha _{k1}}&\frac{\delta \alpha _{k5}}{\delta \alpha _{k2}}&\frac{\delta \alpha _{k5}}{\delta \alpha _{k3}} \end{bmatrix}^T, \end{aligned}$$
(25)
$$\begin{aligned} \mathbf m _{k7}&= \begin{bmatrix} \frac{\delta \beta _{k1}}{\delta \alpha _{k1}} -\frac{\delta \alpha _{k5}}{\delta \alpha _{k1}}\\ \frac{\delta \beta _{k1}}{\delta \alpha _{k2}} -\frac{\delta \alpha _{k5}}{\delta \alpha _{k2}} \\ \frac{\delta \beta _{k1}}{\delta \alpha _{k3}} -\frac{\delta \alpha _{k5}}{\delta \alpha _{k3}} \end{bmatrix}, \end{aligned}$$
(26)
$$\begin{aligned} \mathbf m _{k8}&= \begin{bmatrix} \frac{\delta \beta _{k1}}{\delta \alpha _{k1}} -\zeta _k\frac{\delta \beta _{2}}{\delta \alpha _{k1}}\\ \frac{\delta \beta _{k1}}{\delta \alpha _{k2}} -\zeta _k\frac{\delta \beta _{2}}{\delta \alpha _{k2}} \\ \frac{\delta \beta _{k1}}{\delta \alpha _{k3}} -\zeta _k\frac{\delta \beta _{2}}{\delta \alpha _{k3}} \end{bmatrix}, \end{aligned}$$
(27)
$$\begin{aligned} \mathbf m _{k9}&= \begin{bmatrix} \frac{\delta \beta _{2}}{\delta \alpha _{k1}}&\frac{\delta \beta _{2}}{\delta \alpha _{k2}}&\frac{\delta \beta _{2}}{\delta \alpha _{k3}} \end{bmatrix}^T, \end{aligned}$$
(28)
$$\begin{aligned} \mathbf m _{k10}&= \begin{bmatrix} \frac{\delta \beta _{k'1}}{\delta \alpha _{k1}}&\frac{\delta \beta _{k'1}}{\delta \alpha _{k2}}&\frac{\delta \beta _{k'1}}{\delta \alpha _{k3}} \end{bmatrix}^T, \end{aligned}$$
(29)
$$\begin{aligned} \mathbf m _{k11}&= \begin{bmatrix} \frac{\delta \beta _{k'1}}{\delta \alpha _{k1}} +\zeta _k\frac{\delta \beta _{2}}{\delta \alpha _{k1}}\\ \frac{\delta \beta _{k'1}}{\delta \alpha _{k2}} +\zeta _k\frac{\delta \beta _{2}}{\delta \alpha _{k2}} \\ \frac{\delta \beta _{k'1}}{\delta \alpha _{k3}} +\zeta _k\frac{\delta \beta _{2}}{\delta \alpha _{k3}} \end{bmatrix}, \end{aligned}$$
(30)
$$\begin{aligned} \mathbf m _{k12}&= \begin{bmatrix} -k_{k1}&0&0 \end{bmatrix}^T, \end{aligned}$$
(31)
$$\begin{aligned} \mathbf m _{k13}&= \begin{bmatrix} -L_1 \cos (\alpha _{k2}-\alpha _{k1})&-k_{k2}&0 \end{bmatrix}^T, \end{aligned}$$
(32)
$$\begin{aligned} \mathbf m _{k14}&= \begin{bmatrix} -L_1 \cos (\alpha _{k3}-\alpha _{k1}) \\ -L_2 \cos (\alpha _{k3}-\alpha _{k2}) \\ -k_{k3} \end{bmatrix}, \end{aligned}$$
(33)
$$\begin{aligned} \mathbf m _{k15}&= \begin{bmatrix} -\frac{\delta Y_a}{\delta \alpha _{k1}}&-\frac{\delta Y_a}{\delta \alpha _{k2}}&-\frac{\delta Y_a}{\delta \alpha _{k3}} \end{bmatrix}^T. \end{aligned}$$
(34)

Finally, the coefficient of the stiffness matrix are :

$$\begin{aligned} K_{11,i}&= \frac{E w_i t_i^3}{3 l_i},\end{aligned}$$
(35)
$$\begin{aligned} K_{12,i}&= \frac{E w_i t_i^3}{2 l_i^2},\end{aligned}$$
(36)
$$\begin{aligned} K_{22,i}&= \frac{E w_i t_i^3}{l_i^3},\end{aligned}$$
(37)
$$\begin{aligned} K_{33,i}&= \frac{E w_i t_i}{l_i}. \end{aligned}$$
(38)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belzile, B., Birglen, L. A compliant self-adaptive gripper with proprioceptive haptic feedback. Auton Robot 36, 79–91 (2014). https://doi.org/10.1007/s10514-013-9360-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-013-9360-1

Keywords

Navigation