Advertisement

Autonomous Robots

, Volume 36, Issue 4, pp 349–364 | Cite as

Intensity-based navigation with global guarantees

  • Kamilah Taylor
  • Steven M. LaValle
Article

Abstract

This article introduces simple, information-feedback plans that guide a robot through an unknown obstacle course using the sensed information from a single intensity source. The framework is similar to the well-known family of bug algorithms; however, our plans require less sensing information than any others. The robot is unable to access precise information regarding position coordinates, angular coordinates, time, or odometry, but is nevertheless able to navigate itself to a goal among unknown piecewise-analytic obstacles in the plane. The only sensor providing real values is an intensity sensor, which measures the signal strength emanating from the goal. The signal intensity function may or may not be symmetric; the main requirement is that the level sets are concentric images of simple closed curves. Convergence analysis and distance bounds are established for the presented plans. Furthermore, they are experimentally demonstrated using a differential drive robot and an infrared beacon.

Keywords

Pebble Intensity Function Robot Position Contact Sensor Motion Primitive 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported in part by the DARPA SToMP Program (DSO HR0011-07-1-002), NSF Grant 0904501 (IIS Robotics), NSF Grant 1035345 (Cyberphysical Systems), and MURI/ONR Grant N00014-09-1-1052. We thank Stephen Bond for helpful discussions.

References

  1. Bachrach, A., He, R., & Roy, N. (2009). Autonomous flight in unknown indoor environments. International Journal of Micro Air Vehicles, 1(4), 217–228.CrossRefGoogle Scholar
  2. Baeza, R. A., Culberson, J. C., & Rawlins, G. J. E. (1993). Searching in the plane. Information and Computation, 106(2), 234–252.CrossRefMATHMathSciNetGoogle Scholar
  3. Bender, M. A., Fernandez, A., Ron, D., Sahai, A., & Vadhan, S (1998). The power of a pebble: Exploring and mapping directed graphs. In Proceedings Annual Symposium on Foundations of Computer Science. Palo Alto, CA.Google Scholar
  4. Blum, A., Raghavan, P., & Schieber, B. (1991). Navigating in unfamiliar geometric terrain. In Proceedings of the Twenty-Third Annual ACM Symposium on Theory of Computing: STOC ’91 (pp. 494–504). New York, NY: ACM.Google Scholar
  5. Blum, M., & Kozen, D. (1978). On the power of the compass (or, why mazes are easier to search than graphs). In Proceedings of the Annual Symposium on Foundations of Computer Science (pp. 132–142).Google Scholar
  6. Brunner, J., Mihalák, M., Suri, S., Vicari, E., & Widmayer, P. (2008). Simple robots in polygonal environments: A hierarchy. Algorithmic Aspects of Wireless Sensor, Networks, 5389, 111–124.CrossRefGoogle Scholar
  7. Choset, H., & Burdick, J. (2000). Sensor-based exploration: Incremental construction of the hierarchical generalized Voronoi graph. International Journal of Robotics Research, 19(2), 126–148.CrossRefGoogle Scholar
  8. Choset, H., La Civita, M., & Park, J. C. (1999). Path planning between two points for a robot experiencing localization error in known and unknown environments. In Proceedings of the International Conference on Field and Service Robotics: SR’99 (pp. 98–103).Google Scholar
  9. Clarke, F. H. (1998). Optimization and nonsmooth analysis. Berlin: Springer.Google Scholar
  10. Datta, A., Hipke, C. A., & Schuierer, S. (1995). Competitive searching in polygons-beyond generalized streets. In J. Staples, P. Eades, N. Katoh, & A. Moffat (Eds.), Algorithms and Computation (pp. 32–41). Berlin: Springer.Google Scholar
  11. Deng, X., Kameda, T., & Papadimitriou, C. (1998). How to learn an unknown environment. I: The rectilinear case. Journal of the ACM, 45(2), 215–245.CrossRefMATHMathSciNetGoogle Scholar
  12. Donald, B. R. (1988). The complexity of planar compliant motion planning under uncertainty. In Proceedings of the ACM Symposium on Computational Geometry (pp. 309–318). Paris, France.Google Scholar
  13. Erdmann, M. A. (1984). On motion planning with uncertainty. Master’s thesis, Massachusetts Institute of Technology, Cambridge, MA.Google Scholar
  14. Erdmann, M. A., & Mason, M. T. (1988). An exploration of sensorless manipulation. IEEE Transactions on Robotics, Automation, 4(4), 369–379.CrossRefGoogle Scholar
  15. Fekete, S. P., Klein, R., & Nüchter, A., (2004). Online searching with an autonomous robot. In Proceedings of the Workshop on Algorithmic Foundations of Robotics. Zeist, The Netherlands.Google Scholar
  16. Fraigniaud, P., Ilcinkas, D., Peer, G., Pelc, A., & Peleg, D. (2005a). Graph exploration by a finite automaton. Theoretical Computer Science, 345(2–3), 331–344.CrossRefMATHMathSciNetGoogle Scholar
  17. Gabriely, Y., & Rimon, E. (2008a). Cbug: A quadratically competitive mobile robot navigation algorithm. IEEE Transactions on Robotics, 24(6), 1451–1457.CrossRefGoogle Scholar
  18. Gabriely, Y., & Rimon, E. (2008b). Competitive disconnection detection in on-line mobile robot navigation. Algorithmic Foundation of Robotics VII, 47, 253–267.CrossRefMathSciNetGoogle Scholar
  19. Gfeller, B., Mihalak, M., Suri, S., Vicari, E., & Widmayer, P. (2007). Counting targets with mobile sensors in an unknown environment. In ALGOSENSORS. Wroclaw, Poland.Google Scholar
  20. Girod, L., & Estrin, D. (2001). Robust range estimation using acoustic and multimodal sensing. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Tokyo, Japan.Google Scholar
  21. Goldberg, K. Y. (1993). Orienting polygonal parts without sensors. Algorithmica, 10, 201–225.CrossRefMATHMathSciNetGoogle Scholar
  22. Grasso, F. W., Consi, T. R., Mountain, D. C., & Atema, J. (2000). Biomimetic robot lobster performs chemo-orientation in turbulence using a pair of spatially separated sensors: Progress and challenges. Robotics and Autonomous Systems, 30(1), 115–131.CrossRefGoogle Scholar
  23. Han, D., Andersen, D., Kaminsky, M., Papagiannaki, K., & Seshan, S. (2009). Access point localization using local signal strength gradient. Passive and Active Network, Measurement (pp. 99–108). Seoul, South Korea.Google Scholar
  24. Hashemi, H. (1993). The indoor radio propagation channel. Proceedings of the IEEE, 81(7), 943–968.CrossRefGoogle Scholar
  25. He, R. Prentice, S., & Roy,N. (2008) Planning in information space for a quadrotor helicopter in a gps-denied environments. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA 2008) (pp. 1814–1820). Los Angeles, CA.Google Scholar
  26. Ishida, H., Kagawa, Y., Nakamoto, T., & Moriizumi, T. (1996). Odor-source localization in the clean room by an autonomous mobile sensing system. Sensors and Actuators B, 33(1–3), 115– 121.Google Scholar
  27. Ishida, H., Tanaka, H., Taniguchi, H., & Moriizumi, T. (2006). Mobile robot navigation using vision and olfaction to search for a gas/odor source. Autonomous Robots, 20(3), 231–238.CrossRefGoogle Scholar
  28. Kamon, I., Rimon, E., & Rivlin, E. (1998). TangentBug: A range-sensor-based navigation algorithm. The International Journal of Robotics Research, 17(9), 934.CrossRefGoogle Scholar
  29. Kamon, I., Rimon, E., & Rivlin, E. (1999). Range-sensor based navigation in three dimensions. Proceedings of the IEEE International Conference on Robotics and Automation (p. 1).Google Scholar
  30. Kamon, I., & Rivlin, E. (1997). Sensory-based motion planning with global proofs. IEEE Transactions on Robotics, Automation, 13(6), 814–822.CrossRefGoogle Scholar
  31. Katsev, M., & LaValle, S. M. (2011). Learning the Delaunay triangulation of landmarks from a distance ordering sensor. In Proceedings IEEE International Conference on Intelligent Robots and Systems.Google Scholar
  32. Kim, J., Zhang, F., & Egerstedt, M. (2010). A provably complete exploration strategy by constructing Voronoi diagrams. Autonomous Robots, 29(3–4), 367–380.CrossRefGoogle Scholar
  33. Kleinberg,J. M. (1994). On-line algorithms for robot navigation and server problems. Cambridge, MA: MIT. (Technical Report MIT/LCS/TR-641).Google Scholar
  34. Kowadlo, G., & Russell, R. A. (2008). Robot odor localization: A taxonomy and survey. The International Journal of Robotics Research, 27(8), 869.CrossRefGoogle Scholar
  35. Kuwana, Y., Nagasawa, S., Shimoyama, T., & Kanzaki, R. (1999). Synthesis of the pheromone-oriented behaviour of silkworm moths by a mobile robot with moth antennae as pheromone sensors. Biosensors and Bioelectronics, 14(2), 195–202.CrossRefGoogle Scholar
  36. Landa, Y., Tsai, R., & Cheng, L. T. (2006). Visibility of point clouds and mapping of unknown environments. In Advanced Concepts for Intelligent Vision Systems, 2006: ACIVS’06 (pp. 1014–1025).Google Scholar
  37. Laubach, S. L., & Burdick, J. W. (1999a). An autonomous sensor-based path-planning for planetary microrovers. In Proceedings IEEE International Conference on Robotics & Automation. Detroit, MI.Google Scholar
  38. Laubach, S. L., & Burdick, J. W. (1999b). Practical autonomous path planner for turn-of-the-century planetary microrovers. Proceedings of SPIE, 3525, 182.CrossRefGoogle Scholar
  39. Laubach, S. L., & Burdick, J. W. (1999c). RoverBug: Long Range Navigation for Mars Rovers. Lecture Notes in Control and Information Sciences (pp. 339–348).Google Scholar
  40. Luenberger, D. G. (1973). Introduction to linear and nonlinear programming. New York, NY: Wiley.MATHGoogle Scholar
  41. Lumelsky, V. J. (2005). Sensing, intelligence, motion: How robots and humans move in an unstructured world. Hoboken, NJ: Wiley.CrossRefGoogle Scholar
  42. Lumelsky, V. J., & Skewis, T. (1988). A paradigm for incorporating vision in the robot navigation function. In Proceedings IEEE International Conference on Robotics Automation (pp. 734–739).Google Scholar
  43. Lumelsky, V. J., & Stepanov, A. A. (1987). Path planning strategies for a point mobile automaton moving amidst unknown obstacles of arbitrary shape. Algorithmica, 2, 403–430.CrossRefMATHMathSciNetGoogle Scholar
  44. Martinson, E., & Arkin, R. C. (2004). Noise maps for acoustically sensitive navigation. Proceedings of SPIE, 5609, 50–60.CrossRefGoogle Scholar
  45. Martinson, E., & Schultz, A. (2007). Robotic discovery of the auditory scene. In IEEE International Conference on Robotics and Automation 2007 (pp. 435–440).Google Scholar
  46. Murphy, L., & Newman, P. (2008). Using incomplete online metric maps for topological exploration with the gap navigation tree. In IEEE International Conference on Robotics and Automation. (pp. 2792–2797).Google Scholar
  47. Nakadai, K., Hidai, K., Okuno, H.G., & Kitano, H. (2001). Epipolar geometry based sound localization and extraction for humanoid audition. In Proceedings IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Maui, Hawaii.Google Scholar
  48. Nakadai, K. Matsuura, D., Okuno, H.G., & Kitano, H. (2003). Applying scattering theory to robot audition system: Robust sound source localization and extraction. In Proceedings IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 1147–1152). Citeseer.Google Scholar
  49. Rajko, S., & LaValle, S. M. (2001). A pursuit-evasion bug algorithm. In Proceedings IEEE International Conference on Robotics and Automation (pp. 1954–1960).Google Scholar
  50. Ramo, S., Whinnery, J. R., & Van Duzer, T. (2009). Fields and waves in communication electronics. New Delhi: Wiley.Google Scholar
  51. Russell, R. A. (2003). Chemical source location and the robomole project. In Proceedings of the Australasian Conference on Robotics and Automation. Citeseer.Google Scholar
  52. Russell, R. A. (2004). Robotic location of underground chemical sources. Robotica, 22(01), 109–115.CrossRefGoogle Scholar
  53. Suri, S., Vicari, E., & Widmayer, P. (2008). Simple robots with minimal sensing: From local visibility to global geometry. The International Journal of Robotics Research, 27(9), 1055.CrossRefGoogle Scholar
  54. Taylor, K., & LaValle, S. M. (2009). I-Bug: An intensity-based bug algorithm. In Proceedings IEEE International Conference on Robotics and Automation.Google Scholar
  55. Tekdas, O. Karnad, N., & Isler, V. (2009). Efficient strategies for collecting data from wireless sensor network nodes using mobile robots. In 14th International Symposium on Robotics Research: ISRR 2009.Google Scholar
  56. Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic Robotics. Cambridge, MA: MIT.MATHGoogle Scholar
  57. Thrun, S. Hahnel, D. Ferguson, D. Montemerlo, M., Triebel, R., Burgard, W., Baker, C., Omohundro, Z., Thayer, S., & W. Whittaker (2003). A system for volumetric robotic mapping of abandoned minesh. In IEEE International Conference on Robotics and Automation (Vol. 3, pp. 4270–4275). Citeseer.Google Scholar
  58. Tovar, B., Murrieta-Cid, R., & LaValle, S. M. (2007). Distance-optimal navigation in an unknown environment without sensing distances. IEEE Transactions on Robotics, 23(3), 506–518. Google Scholar
  59. Yershova, A., Tovar, B., Katsev, M., Ghrist, R., & LaValle, S.M. (2010). Mapping and pursuit-evasion strategies for a simple wall-following robot. IEEE Transactions on Robotics (under review).Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of IllinoisUrbanaUSA
  2. 2.LinkedInMountain ViewUSA

Personalised recommendations