Skip to main content
Log in

Adaptive splitbelt treadmill walking of a biped robot using nonlinear oscillators with phase resetting

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

To investigate the adaptability of a biped robot controlled by nonlinear oscillators with phase resetting based on central pattern generators, we examined the walking behavior of a biped robot on a splitbelt treadmill that has two parallel belts controlled independently. In an experiment, we demonstrated the dynamic interactions among the robot mechanical system, the oscillator control system, and the environment. The robot produced stable walking on the splitbelt treadmill at various belt speeds without changing the control strategy and parameters, despite a large discrepancy between the belt speeds. This is due to modulation of the locomotor rhythm and its phase through the phase resetting mechanism, which induces the relative phase between leg movements to shift from antiphase, and causes the duty factors to be autonomously modulated depending on the speed discrepancy between the belts. Such shifts of the relative phase and modulations of the duty factors are observed during human splitbelt treadmill walking. Clarifying the mechanisms producing such adaptive splitbelt treadmill walking will lead to a better understanding of the phase resetting mechanism in the generation of adaptive locomotion in biological systems and consequently to a guiding principle for designing control systems for legged robots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aoi, S., Egi, Y., Sugimoto, R., Yamashita, T., Fujiki, S., & Tsuchiya, K. (2012a). Functional roles of phase resetting in the gait transition of a biped robot from quadrupedal to bipedal locomotion. IEEE Transactions on Robotics, 28(6), 1244–1259.

    Google Scholar 

  • Aoi, S., Katayama, D., Fujiki, S., Tomita, N., Funato, T., Yamashita, T., Senda, K., & Tsuchiya, K. (2013a). A stability-based mechanism for hysteresis in the walk-trot transition in quadruped locomotion. Journal of the Royal Society Interface, 10(81), 20120908.

    Google Scholar 

  • Aoi, S., Kondo, T., Hayashi, N., Yanagihara, D., Aoki, S., Yamaura, H., Ogihara, N., Funato, T., Tomita, N., Senda, K., & Tsuchiya, K. (2013b). Contributions of phase resetting and interlimb coordination to the adaptive control of hindlimb obstacle avoidance during locomotion in rats: A simulation study. Biological Cybernetics, 107(2), 201–216.

    Google Scholar 

  • Aoi, S., Ogihara, N., Funato, T., Sugimoto, Y., & Tsuchiya, K. (2010). Evaluating functional roles of phase resetting in generation of adaptive human bipedal walking with a physiologically based model of the spinal pattern generator. Biological Cybernetics, 102(5), 373–387.

    Article  Google Scholar 

  • Aoi, S., Ogihara, N., Funato, T., & Tsuchiya, K. (2012b). Sensory regulation of stance-to-swing transition in generation of adaptive human walking: A simulation study. Robotics and Autonomous Systems, 60(5), 685–691.

    Google Scholar 

  • Aoi, S., & Tsuchiya, K. (2005). Locomotion control of a biped robot using nonlinear oscillators. Autonomous Robots, 19(3), 219–232.

    Article  Google Scholar 

  • Aoi, S., & Tsuchiya, K. (2007). Adaptive behavior in turning of an oscillator-driven biped robot. Autonomous Robots, 23(1), 37–57.

    Article  MathSciNet  Google Scholar 

  • Aoi, S., Yamashita, T., & Tsuchiya, K. (2011). Hysteresis in the gait transition of a quadruped investigated using simple body mechanical and oscillator network models. Physical Review E, 83(6), 061909.

    Article  Google Scholar 

  • Bosco, G., & Poppele, R. E. (2001). Proprioception from a spinocerebellar perspective. Physiological Reviews, 81, 539–568.

    Google Scholar 

  • Burke, R. E., Degtyarenko, A. M., & Simon, E. S. (2001). Patterns of locomotor drive to motoneurons and last-order interneurons: Clues to the structure of the CPG. Journal of Neurophysiology, 86, 447–462.

    Google Scholar 

  • Choi, J. T., & Bastian, A. J. (2007). Adaptation reveals independent control networks for human walking. Nature Neuroscience, 10(8), 1055–1062.

    Article  Google Scholar 

  • Collins, S. H., Ruina, A. L., Tedrake, R., & Wisse, M. (2005). Efficient bipedal robots based on passive-dynamic walkers. Science, 307, 1082–1085.

    Article  Google Scholar 

  • Conway, B. A., Hultborn, H., & Kiehn, O. (1987). Proprioceptive input resets central locomotor rhythm in the spinal cat. Experimental Brain Research, 68, 643–656.

    Article  Google Scholar 

  • Duysens, J. (1977). Fluctuations in sensitivity to rhythm resetting effects during the cat’s step cycle. Brain Research, 133(1), 190–195.

    Article  Google Scholar 

  • Duysens, J., Clarac, F., & Cruse, H. (2000). Load-regulating mechanisms in gait and posture: Comparative aspects. Physiological Reviews, 80, 83–133.

    Google Scholar 

  • Endo, G., Morimoto, J., Matsubara, T., Nakanishi, J., & Cheng, G. (2008). Learning CPG-based biped locomotion with a policy gradient method: Application to a humanoid robot. International Journal of Robotics Research, 27(2), 213–228.

    Article  Google Scholar 

  • Forssberg, H., & Grillner, S. (1973). The locomotion of the acute spinal cat injected with clonidine i.v. Brain Research, 50, 184–186.

    Article  Google Scholar 

  • Funato, T., Aoi, S., Oshima, H., & Tsuchiya, K. (2010). Variant and invariant patterns embedded in human locomotion through whole body kinematic coordination. Experimental Brain Research, 205(4), 497–511.

    Article  Google Scholar 

  • Grillner, S. (1975). Locomotion in vertebrates: Central mechanisms and reflex interaction. Physiological Reviews, 55(2), 247–304.

    Article  Google Scholar 

  • Guertin, P. A. (2009). The mammalian central pattern generator for locomotion. Brain Research Reviews, 62, 45–56.

    Article  Google Scholar 

  • Guertin, P., Angel, M. J., Perreault, M.-C., & McCrea, D. A. (1995). Ankle extensor group I afferents excite extensors throughout the hindlimb during fictive locomotion in the cat. Journal of Physiology, 487(1), 197–209.

    Google Scholar 

  • Ijspeert, A. J. (2008). Central pattern generators for locomotion control in animals and robots: A review. Neural Networks, 21(4), 642–653.

    Article  Google Scholar 

  • Ijspeert, A. J., Crespi, A., Ryczko, D., & Cabelguen, J. M. (2007). From swimming to walking with a salamander robot driven by a spinal cord model. Science, 315, 1416–1420.

    Article  Google Scholar 

  • Ito, S., Yuasa, H., Luo, Z., Ito, M., & Yanagihara, D. (1998). A mathematical model of adaptive behavior in quadruped locomotion. Biological Cybernetics, 78, 337–347.

    Article  MATH  Google Scholar 

  • Kimura, H., Fukuoka, Y., & Cohen, A. (2007). Adaptive dynamic walking of a quadruped robot on natural ground based on biological concepts. International Journal of Robotics Research, 26(5), 475–490.

    Article  Google Scholar 

  • Lafreniere-Roula, M., & McCrea, D. A. (2005). Deletions of rhythmic motoneuron activity during fictive locomotion and scratch provide clues to the organization of the mammalian central pattern generator. Journal of Neurophysiology, 94, 1120–1132.

    Article  Google Scholar 

  • Maufroy, C., Kimura, H., & Takase, K. (2010). Integration of posture and rhythmic motion controls in quadrupedal dynamic walking using phase modulations based on leg loading/unloading. Autonomous Robots, 28(3), 331–353.

    Article  Google Scholar 

  • McCrea, D. A., & Rybak, I. A. (2008). Organization of mammalian locomotor rhythm and pattern generation. Brain Research Reviews, 57, 134–146.

    Article  Google Scholar 

  • Morton, S. M., & Bastian, A. J. (2006). Cerebellar contributions to locomotor adaptations during splitbelt treadmill walking. Journal of Neuroscience, 26(36), 9107–9116.

    Article  Google Scholar 

  • Nakanishi, J., Morimoto, J., Endo, G., Cheng, G., Schaal, S., & Kawato, M. (2004). Learning from demonstration and adaptation of biped locomotion. Robotics and Autonomous Systems, 47(2–3), 79–91.

    Article  Google Scholar 

  • Nakanishi, M., Nomura, T., & Sato, S. (2006). Stumbling with optimal phase reset during gait can prevent a humanoid from falling. Biological Cybernetics, 95, 503–515.

    Article  MATH  Google Scholar 

  • Nomura, T., Kawa, K., Suzuki, Y., Nakanishi, M., & Yamasaki, T. (2009). Dynamic stability and phase resetting during biped gait. Chaos, 19, 026103.

    Article  MathSciNet  Google Scholar 

  • Orlovsky, G. N., Deliagina, T., & Grillner, S. (1999). Neuronal control of locomotion: From mollusc to man. Oxford: Oxford University Press.

  • Otoda, Y., Kimura, H., & Takase, K. (2009). Construction of a gait adaptation model in human split-belt treadmill walking using a two-dimensional biped robot. Advanced Robotics, 23(5), 535–561.

    Article  Google Scholar 

  • Pfeifer, R., Lungarella, M., & Iida, F. (2007). Self-organization, embodiment, and biologically inspired robotics. Science, 318, 1088–1093.

    Article  Google Scholar 

  • Poppele, R. E., & Bosco, G. (2003). Sophisticated spinal contributions to motor control. Trends in Neurosciences, 26, 269–276.

    Article  Google Scholar 

  • Poppele, R. E., Bosco, G., & Rankin, A. M. (2002). Independent representations of limb axis length and orientation in spinocerebellar response components. Journal of Neurophysiology, 87, 409–422.

    Google Scholar 

  • Reisman, D. S., Block, H. J., & Bastian, A. J. (2005). Interlimb coordination during locomotion: What can be adapted and stored? Journal of Neurophysiology, 94, 2403–2415.

    Article  Google Scholar 

  • Ritzmann, R. E., Quinn, R. D., & Fischer, M. S. (2004). Convergent evolution and locomotion through complex terrain by insects, vertebrates and robots. Arthropod Structure & Development, 33, 361–379.

    Article  Google Scholar 

  • Rybak, I. A., Shevtsova, N. A., Lafreniere-Roula, M., & McCrea, D. A. (2006). Modelling spinal circuitry involved in locomotor pattern generation: Insights from deletions during fictive locomotion. Journal of Physiology, 577(2), 617–639.

    Article  Google Scholar 

  • Rybak, I. A., Stecina, K., Shevtsova, N. A., & McCrea, D. A. (2006). Modelling spinal circuitry involved in locomotor pattern generation: Insights from the effects of afferent stimulation. Journal of Physiology, 577(2), 641–658.

    Article  Google Scholar 

  • Schomburg, E. D., Petersen, N., Barajon, I., & Hultborn, H. (1998). Flexor reflex afferents reset the step cycle during fictive locomotion in the cat. Experimental Brain Research, 122(3), 339–350.

    Article  Google Scholar 

  • Shik, M. L., & Orlovsky, G. N. (1976). Neurophysiology of locomotor automatism. Physiological Reviews, 56(3), 465–501.

    Google Scholar 

  • Steingrube, S., Timme, M., Wörgötter, F., & Manoonpong, P. (2010). Self-organized adaptation of a simple neural circuit enables complex robot behaviour. Nature Physics, 6, 224–230.

    Article  Google Scholar 

  • Yakovenko, S., Gritsenko, V., & Prochazka, A. (2004). Contribution of stretch reflexes to locomotor control: A modeling study. Biological Cybernetics, 90, 146–155.

    Article  MATH  Google Scholar 

  • Yamasaki, T., Nomura, T., & Sato, S. (2003a). Phase reset and dynamic stability during human gait. BioSystems, 71, 221–232.

    Google Scholar 

  • Yamasaki, T., Nomura, T., & Sato, S. (2003b). Possible functional roles of phase resetting during walking. Biological Cybernetics, 88, 468–496.

    Google Scholar 

  • Yanagihara, D., & Kondo, I. (1996). Nitric oxide plays a key role in adaptive control of locomotion in cat. Proceedings of the National Academy of Sciences USA, 93, 13292–13297.

    Article  Google Scholar 

  • Yanagihara, D., Udo, M., Kondo, I., & Yoshida, T. (1993). A new learning paradigm: Adaptive changes in interlimb coordination during perturbed locomotion in decerebrate cats. Neuroscience Research, 18(3), 241–244.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Kenji Sakaida for his help with the measurement of human splitbelt treadmill walking. This paper is supported in part by a Grant-in-Aid for Scientific Research (B) No. 23360111 and a Grant-in-Aid for Creative Scientific Research No. 19GS0208 from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinya Aoi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (WMV 5248 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujiki, S., Aoi, S., Yamashita, T. et al. Adaptive splitbelt treadmill walking of a biped robot using nonlinear oscillators with phase resetting. Auton Robot 35, 15–26 (2013). https://doi.org/10.1007/s10514-013-9331-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-013-9331-6

Keywords

Navigation