Advertisement

Autonomous Robots

, Volume 35, Issue 1, pp 1–14 | Cite as

Walking pattern generation for a humanoid robot with compliant joints

  • Zhibin Li
  • Nikos G. Tsagarakis
  • Darwin G. Caldwell
Article

Abstract

This work presents a walking pattern generator based on the control of the center of mass (COM) states and its experimental validations on the compliant humanoid robot COMAN powered by intrinsically compliant joints. To cope with the inaccuracies of the joint position tracking resulted by the physical compliance, the proposed pattern generator uses the feedback states of the COM and on-line computes the updated COM references. The position and velocity of the COM are the state variables, and the constrained ground reaction force (GRF) limited by the support polygon is the control effort to drive the real COM states to track the desired references. The frequency analysis of the COM demonstrates its low frequency spectrum that indicates the demand of a low control bandwidth which is suitable for a robot system with compliant joints. The effectiveness of the proposed gait generation method was demonstrated by the experiments performed on the COMAN robot. The experimental data such as the COM position and velocity tracking, the GRF applied on feet, the measured step length and the walking velocity are analyzed. The effect of the passive compliance is also discussed.

Keywords

Walking pattern generation Compliant robot Series elastic actuator 

Notes

Acknowledgments

This study is supported by the FP7 European project AMARSi (ICT-248311).

References

  1. Buschmann, T. (2010). Simulation and control of biped walking robots. Ph.D. thesis, Faculty of mechanical engineering, Technical University of Munich.Google Scholar
  2. Colasanto, L., Tsagarakis, N. G., Li, Z., & Caldwell, D. G. (2012). Internal model control for improving the gait tracking of a compliant humanoid robot. In: IEEE/RSJ International Conference on Intelligent Robots and Systems. Portugal.Google Scholar
  3. Geyer, H., Seyfarth, A., & Blickhan, R. (2006). Compliant leg behaviour explains basic dynamics of walking and running. Proceedings of the Royal Society B: Biological Sciences, 273(1603), 2861.CrossRefGoogle Scholar
  4. Hirai, K., Hirose, M., Haikawa, Y., & Takenaka, T. (1998). The development of honda humanoid robot. In: IEEE International Conference on Robotics and Automation, 2, 1321–1326.Google Scholar
  5. Hirose, M., Haikawa, Y., Takenaka, T., & Hirai, K. (2001). Development of humanoid robot ASIMO. In: IEEE/RSJ International Conference on Intelligent Robots and Systems. Ieee.Google Scholar
  6. Jafari, A., Tsagarakis, N., Vanderborght, B., Caldwell, D. (2010). A novel actuator with adjustable stiffness (AwAS). In: IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 4201–4206). IEEE.Google Scholar
  7. Kagami, S., Kitagawa, T., Nishiwaki, K., Sugihara, T., Inaba, M., & Inoue, H. (2002). fast dynamically equilibrated walking trajectory generation method of humanoid robot. Autonomous Robots, 12(1), 71–82.zbMATHCrossRefGoogle Scholar
  8. Kajita, S., Hirukawa, H., Yokoi, K., & Harada, K. (2005). Humanoid robots. Tokyo: Ohm-sha.Google Scholar
  9. Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., Hirukawa, H. (2003). Biped walking pattern generation by using preview control of zero-moment point. IEEE International Conference on Robotics and Automation (pp. 1620–1626).Google Scholar
  10. Kajita, S., Kanehiro, F., Kaneko, K., Yokoi, K., Hirukawa, H. (2001). The 3d linear inverted pendulum mode: a simple modeling for a biped walking pattern generation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 1, (pp. 239–246).Google Scholar
  11. Kajita, S., Morisawa, M., Miura, K., Nakaoka, S., Harada, K., Kaneko, K., Kanehiro, F., Yokoi, K. (2010). Biped walking stabilization based on linear inverted pendulum tracking. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 4489–4496). IEEE.Google Scholar
  12. Laffranchi, M., Tsagarakis, N., Caldwell, D. (2010). A variable physical damping actuator (vpda) for compliant robotic joints. In: IEEE International Conference on Robotics and Automation (ICRA) (pp. 1668–1674). IEEE.Google Scholar
  13. Li, Z., Tsagarakis, N., Caldwell, D.G. (2012). A passivity based admittance control for stabilizing the compliant humanoid COMAN. In: IEEE-RAS International Conference on Humanoid Robots. Osaka, Japan.Google Scholar
  14. Li, Z., Vanderborght, B., Tsagarakis, N.G., Caldwell, D.G. (2010). Fast bipedal walk using large strides by modulating hip posture and toe-heel motion. In: IEEE International Conference on Robotics and Biomimetics. Tianjin, China (Dec 14–18, 2010).Google Scholar
  15. Mitobe, K., Capi, G., & Nasu, Y. (2000). Control of walking robots based on manipulation of the zero moment point. Robotica, 18(06), 651–657.CrossRefGoogle Scholar
  16. Morisawa, M., Harada, K., Kajita, S., Nakaoka, S., Fujiwara, K., Kanehiro, F., Kaneko, K., Hirukawa, H. (2007). Experimentation of Humanoid Walking Allowing Immediate Modification of Foot Place Based on Analytical Solution. IEEE International Conference on Robotics and Automation (pp. 3989–3994).Google Scholar
  17. Narioka, K., Tsugawa, S., & Hosoda, K. (2009). 3d limit cycle walking of musculoskeletal humanoid robot with flat feet. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 4676–4681) .Google Scholar
  18. Ogura, Y., Aikawa, H., Shimomura, K., Morishima, A., Lim, H., Takanishi, A. (2006). Development of a new humanoid robot wabian-2. In: IEEE International Conference on Robotics and Automation (pp. 76–81). IEEE.Google Scholar
  19. Popovic, M. B. (2005). Ground reference points in legged locomotion: Definitions, biological trajectories and control implications. The International Journal of Robotics Research, 24(12), 1013–1032.Google Scholar
  20. Pratt, J., Carff, J., Drakunov, S., & Goswami, A. (2006). Capture point: A step toward humanoid push recovery. In: IEEE-RAS International Conference on Humanoid Robots (pp. 200–207).Google Scholar
  21. Pratt, J.E., & Drakunov, S.V. (2007). Derivation and Application of a Conserved Orbital Energy for the Inverted Pendulum Bipedal Walking Model. Proceedings 2007 IEEE International Conference on Robotics and Automation 0(2), 4653–4660.Google Scholar
  22. Pratt, J. E., & Tedrake, R. (2006). Velocity-Based Stability Margins for Fast Bipedal Walking. in the International Science Forum of the University of Heidelberg entitled ”Fast Motions in Biomechanics and Robots” (pp. 1–27). Heidelberg: Germany.Google Scholar
  23. Raibert, M., & Hodgins, J. (1991). Animation of dynamic legged locomotion. In: ACM SIGGRAPH Computer Graphics, vol. 25, pp. 349–358. ACM.Google Scholar
  24. Sugihara, T. (2009). Standing stabilizability and stepping maneuver in planar bipedalism based on the best COM-ZMP regulator. IEEE International Conference on Robotics and Automation pp., 2009, 1966–1971.Google Scholar
  25. Takanishi, A., Ishida, M., Yamazaki, Y., & Kato, I. (1985). The realization of dynamic walking by the biped walking robot WL-10RD. In: IEEE International Conference on Advanced Robotics (pp. 459–466).Google Scholar
  26. Takenaka, T., Matsumoto, T., Yoshiike, T., Hasegawa, T., Shirokura, S., Kaneko, H., Orita, A. (2009). Real time motion generation and control for biped robot -4th- report: Integrated balance control. 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems pp. 1601–1608 (2009). DOI:10.1109/IROS.2009.5354522.Google Scholar
  27. Tsagarakis, N., Laffranchi, M., Vanderborght, B., Caldwell, D. (2009). A compact soft actuator unit for small scale human friendly robots. In: IEEE International Conference on Robotics and Automation (pp. 4356–4362). IEEE.Google Scholar
  28. Tsagarakis, N., Li, Z., Saglia, J. A., & Caldwell, D. G. (2011). The design of the lower body of the compliant humanoid robot ‘cCub’. 2011 IEEE International Conference on Robotics and Automation (pp. 2035–2040). China: Shanghai.Google Scholar
  29. Tsagarakis, N., Metta, G., Sandini, G., Vernon, D., Beira, R., Becchi, F., et al. (2007). iCub: The design and realization of an open humanoid platform for cognitive and neuroscience research. Advanced Robotics, 21(10), 1151–1175.CrossRefGoogle Scholar
  30. Tsagarakis, N. G., Becchi, F., Righetti, L., Ijspeert, A., & Caldwell, D. G. (2007). Lower body realization of the baby humanoid-‘iCub’. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 3616–3622).Google Scholar
  31. Vanderborght, B., Tsagarakis, N., Van Ham, R., Thorson, I., & Caldwell, D. (2009). MACCEPA 2.0: compliant actuator used for energy efficient hopping robot Chobino1D. Autonomous Robots, 31(1), 55–65.CrossRefGoogle Scholar
  32. Vaughan, E., Di Paolo, E., & Harvey, I. (2004). The evolution of control and adaptation in a 3d powered passive dynamic walker. In: Proceedings of the Ninth International Conference on the Simulation and Synthesis of Living Systems, Artificial Life IX (pp. 139–145).Google Scholar
  33. Vukobratović, M., Andrić, D., & Borovac, B. (2004). How to achieve various gait patterns from single nominal. Advanced Robotic, 1(2), 99–108.Google Scholar
  34. Yamaguchi, J., Takanishi, A., & Kato, I. (1995). Experimental development of a foot mechanism with shock absorbing material for acquisition of landing surface position information and stabilization of dynamic biped walking. In: IEEE International Conference on Robotics and Automation (pp. 2892–2899).Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Zhibin Li
    • 1
  • Nikos G. Tsagarakis
    • 1
  • Darwin G. Caldwell
    • 1
  1. 1.Department of Advanced RoboticsIstituto Italiano di TecnologiaGenoaItaly

Personalised recommendations