Autonomous Robots

, Volume 33, Issue 3, pp 291–307 | Cite as

Large-scale multi-robot task allocation via dynamic partitioning and distribution

Article

Abstract

This paper introduces an approach that scales assignment algorithms to large numbers of robots and tasks. It is especially suitable for dynamic task allocations since both task locality and sparsity can be effectively exploited. We observe that an assignment can be computed through coarsening and partitioning operations on the standard utility matrix via a set of mature partitioning techniques and programs. The algorithm mixes centralized and decentralized approaches dynamically at different scales to produce a fast, robust method that is accurate and scalable, and reduces both the global communication and unnecessary repeated computation. An allocation results by operating on each partition: either the steps are repeated recursively to refine the generalized assignment, or each sub-problem may be solved by an existing algorithm. The results suggest that only a minor sacrifice in solution quality is needed for significant gains in efficiency. The algorithm is validated using extensive simulation experiments and the results show advantages over the traditional optimal assignment algorithms.

Keywords

Assignment partitioning Multi-robot task allocation Dynamic assignment 

References

  1. Arafeh, B. R., Day, K., & Touzene, A. (2008). A multilevel partitioning approach for efficient tasks allocation in heterogeneous distributed systems. Journal of Systems Architecture—Embedded Systems Design, 54(5), 530–548. Google Scholar
  2. Aykanat, C., Pinar, A., & Çatalyürek, Ü. V. (2002). Permuting sparse rectangular matrices into block-diagonal form. SIAM Journal on Scientific Computing, 25, 1860–1879. CrossRefGoogle Scholar
  3. Berhault, M., Huang, H., Keskinocak, P., Koenig, S., Elmaghraby, W., Griffin, P., & Kleywegt, A. J. (2003). Robot exploration with combinatorial auctions. In Proc. of IEEE/RSJ intern. conf. on intelligent robots and systems (IROS’03) (pp. 1957–1962), Las Vegas, NV, U.S.A., October 2003. CrossRefGoogle Scholar
  4. Bertsekas, D. P., & Castanon, D. A. (1991). Parallel synchronous and asynchronous implementations of the auction algorithm. Parallel Computing, 17, 707–732. MATHCrossRefGoogle Scholar
  5. Bertsekas, D. P. (1990). The auction algorithm for assignment and other network flow problems: a tutorial. Interfaces. Google Scholar
  6. Çatalyürek, U. V., & Aykanat, C. (1999). Hypergraph-partitioning based decomposition for parallel sparse-matrix vector multiplication. IEEE Transactions on Parallel and Distributed Computing, 10, 673–693. CrossRefGoogle Scholar
  7. Cao, Y. U., Fukunaga, A. S., & Kahng, A. B. (1997). Cooperative mobile robotics: antecedents and directions. Autonomous Robots, 4, 226–234. CrossRefGoogle Scholar
  8. Choi, H.-L., Brunet, L., & How, J. P. (2009). Consensus-based decentralized auctions for robust task allocation. IEEE Transactions on Robotics, 25(4), 912–926. CrossRefGoogle Scholar
  9. Dhillon, I. S. (2001). Co-clustering documents and words using Bipartite spectral graph partitioning. In Proceedings of the ACM conference on knowledge discovery and data mining, San Francisco, CA (pp. 269–274). Google Scholar
  10. Dias, M. B., Zlot, R., Kalra, N., & Stentz, A. (2006). Market-based multirobot coordination: a survey and analysis. Proceedings of the IEEE—Special Issue on Multi-robot Systems, 94(7), 1257–1270. Google Scholar
  11. Fiduccia, C., & Mattheyse, R. (1982). A linear time heuristic for improving network partitions. In Proc. 19th ACM/IEEE design automation conference (Vol. 49, pp. 175–181). Google Scholar
  12. Garey, M. R., Johnson, D. S., & Stockmeyer, L. (1974). Some simplified NP-complete problems. In STOC’74: proceedings of the sixth annual ACM symposium on theory of computing (pp. 47–63). CrossRefGoogle Scholar
  13. Gerkey, B., & Matarić, M. J. (2004). A formal analysis and taxonomy of task allocation in multi-robot systems. International Journal of Robotics Research, 23(9), 939–954. CrossRefGoogle Scholar
  14. Gilbert, J. R., Miller, G. L., & Teng, S.-H. (1995). Geometric mesh partitioning: implementation and experiments. In Proc. International parallel processing symposium (pp. 418–427). CrossRefGoogle Scholar
  15. Goldberg, D., Cicirello, V. A., Dias, M. B., Simmons, R. G., Smith, S. F., & Stentz, A. (2003). Task allocation using a distributed market-based planning mechanism. In Proceedings of the international joint conference on autonomous agents & multiagent systems (AAMAS) (pp. 996–997), Melbourne, Australia. CrossRefGoogle Scholar
  16. Hendrickson, B. & Kolda, T. G. (1998). Partitioning rectangular and structurally nonsymmetric sparse matrices for parallel processing. SIAM Journal on Scientific Computing, 21, 2048–2072. MathSciNetCrossRefGoogle Scholar
  17. Hendrickson, B., & Leland, R. (1993). A multilevel algorithm for partitioning graphs. Technical report sand93-1301. Google Scholar
  18. Hendrickson, B., Leland, R., & Plimpton, S. (1995). An efficient parallel algorithm for matrix-vector multiplication. International Journal of High Speed Computing, 7, 73–88 CrossRefGoogle Scholar
  19. Ji, M., Azuma, S., & Egerstedt, M. (2006). Role-assignment in multi-agent coordination. International Journal of Assistive Robotics and Mechatronics, 7(1), 32–40. Google Scholar
  20. Kalra, N., & Martinoli, A. (2006). A comparative study of market-based and threshold-based task allocation. In Proc. of the international symposium on distributed autonomous robotic systems, Minneapolis, MM. Google Scholar
  21. Karypis, G., & Kumar, V. (1998). A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM Journal on Scientific Computing, 20, 359–392. MathSciNetCrossRefGoogle Scholar
  22. Kernighan, B. W., & Lin, S. (1970). An efficient heuristic procedure for partitioning graphics. The Bell System Technical Journal, 49, 291–307. MATHGoogle Scholar
  23. Kloder, S., & Hutchinson, S. (2006). Path planning for permutation-invariant multirobot formations. IEEE Transactions on Robotics, 22(4), 650–665. CrossRefGoogle Scholar
  24. Kolda, T. G. (1998). Partitioning sparse rectangular matrices for parallel processing. In LNCS (pp. 68–79). Google Scholar
  25. Kuhn, H. W. (1955). The Hungarian method for the assignment problem. Naval Research Logistics Quarterly, 2, 83–97. MathSciNetCrossRefGoogle Scholar
  26. Lerman, K., Jones, C., Galstyan, A., & Maja, J. (2006). Analysis of dynamic task allocation in multi-robot systems. International Journal of Robotics Research, 25, 225–242. CrossRefGoogle Scholar
  27. Liu, L., & Shell, D. (2011). Assessing optimal assignment under uncertainty: an interval-based algorithm. The International Journal of Robotics Research, 30(7), 936–953. CrossRefGoogle Scholar
  28. Melo, F. S., & Veloso, M. (2011). Decentralized MDPs with sparse interactions. Artificial Intelligence, 175(11), 1757–1789. MathSciNetMATHCrossRefGoogle Scholar
  29. Michael, N., Zavlanos, M. M., Kumar, V., & Pappas, G. J. (2008). Distributed multi-robot task assignment and formation control. In IEEE international conference on robotics and automation, Pasadena, CA, May 2008. Google Scholar
  30. Miller, G. L., Teng, S.-H., Thurston, W., & Vavasis, S. A. (1993). Automatic mesh partitioning. In A. George et al. (Ed.), Graphs theory and sparse matrix computation (pp. 57–84). Berlin: Springer. CrossRefGoogle Scholar
  31. Papa, D. A., & Markov, I. L. (2007). Hypergraph partitioning and clustering. In Approximation algorithms and metaheuristics. Google Scholar
  32. Pothen, A., Simmon, H. D., & Liou, K.-P. (1990). Partitioning sparse matrices with eigenvectors of graphs. SIAM Journal on Matrix Analysis and Applications, 11, 430–452. MathSciNetMATHCrossRefGoogle Scholar
  33. Russell, S. J., & Norvig, P. (2009). Artificial intelligence: a modern approach (3rd ed.). Upper Saddle River: Prentice-Hall. Google Scholar
  34. Simmons, R., Smith, T., Dias, M. B., Goldberg, D., Hershberger, D., Stentz, A., & Zlot, R. (2002). A layered architecture for coordination of mobile robots. In Multi-robot systems: from swarms to intelligent automata. Google Scholar
  35. Smith, S. L., & Bullo, F. (2009). Monotonic target assignment for robotic networks. IEEE Transactions on Automatic Control, 54(9), 2042–2057. MathSciNetCrossRefGoogle Scholar
  36. Tang, F., & Parker, L. E. (2007). A complete methodology for generating multi-robot task solutions using ASyMTRe-D and market-based task allocation. In Proc. of IEEE international conference on robotics and automation (ICRA’93) (pp. 3351–3358). Google Scholar
  37. Toroslu, I. H., & Üçoluk, G. (2007). Incremental assignment problem. Information Sciences, March 2007. Google Scholar
  38. Zavlanos, M. M., & Pappas, G. J. (2008). Dynamic assignment in distributed motion planning with local coordination. IEEE Transactions on Robotics, 24(1), 232–242. CrossRefGoogle Scholar
  39. Zavlanos, M. M., Spesivtsev, L., & Pappas, G. J. (2008). A distributed auction algorithm for the assignment problem. In Proceedings of the IEEE conference on decision and control (pp. 1212–1217). Cancun Mexico, December 2008. Google Scholar
  40. Zlot, R., & Stentz, A. (2003). Market-based multirobot coordination using task abstraction. In The 4th international conference on field and service robotics. Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringTexas A&M UniversityCollege StationUSA

Personalised recommendations