Autonomous Robots

, 31:299 | Cite as

Search and pursuit-evasion in mobile robotics

A survey
  • Timothy H. Chung
  • Geoffrey A. Hollinger
  • Volkan Isler
Article

Abstract

This paper surveys recent results in pursuit-evasion and autonomous search relevant to applications in mobile robotics. We provide a taxonomy of search problems that highlights the differences resulting from varying assumptions on the searchers, targets, and the environment. We then list a number of fundamental results in the areas of pursuit-evasion and probabilistic search, and we discuss field implementations on mobile robotic systems. In addition, we highlight current open problems in the area and explore avenues for future work.

Keywords

Autonomous search Pursuit-evasion Search theory 

References

  1. Adler, M., Räcke, H., Sivadasan, N., Sohler, C., & Vöcking, B. (2003). Randomized pursuit-evasion in graphs. Combinatorics, Probability & Computing, 12(3), 225–244. MATHCrossRefGoogle Scholar
  2. Aigner, M., & Fromme, M. (1984). A game of cops and robbers. Discrete Applied Mathematics, 8(1), 1–12. MathSciNetMATHCrossRefGoogle Scholar
  3. Alexander, S., Bishop, R., & Ghrist, R. (2006). Pursuit and evasion in non-convex domains of arbitrary dimensions. In Proc. robotics: science and systems conference. Google Scholar
  4. Alexander, S., Bishop, R., & Ghrist, R. (2009). Capture pursuit games on unbounded domains. L’Enseignement Mathématique, 55, 103–125. MathSciNetMATHGoogle Scholar
  5. Alonso, L., Goldstein, A. S., & Reingold, E. M. (1992). Lion and man: upper and lower bounds. INFORMS Journal on Computing, 4(4), 447. MathSciNetMATHCrossRefGoogle Scholar
  6. Alspach, B. (2004). Searching and sweeping graphs: a brief survey. Matematiche, 59, 5–37. MathSciNetMATHGoogle Scholar
  7. Assaf, D., & Zamir, S. (1985). Optimal sequential search: a Bayesian approach. Annals of Statistics, 13(3), 1213–1221. MathSciNetMATHCrossRefGoogle Scholar
  8. Barrière, L., Fraigniaud, P., Santoro, N., & Thilikos, D. (2003). Searching is not jumping, graph-theoretic concepts in computer. Science, 2880, 34–45. Google Scholar
  9. Başar, T., & Olsder, G. J. (1999). Dynamic noncooperative game theory. Philadelphia: Society for Industrial Mathematics. MATHGoogle Scholar
  10. Benkoski, S. J., Monticino, M. G., & Weisinger, J. R. (1991). A survey of the search theory literature. Naval Research Logistics, 38(4), 469–494. MATHCrossRefGoogle Scholar
  11. Bhadauria, D., & Isler, V. (2011). Capturing an evader in a polygonal environment with obstacles. In Proc. international joint conference on artificial intelligence. Google Scholar
  12. Bhattacharya, S., & Hutchinson, S. (2010). On the existence of Nash equilibrium for a visibility based pursuit evasion game. The International Journal of Robotics Research, 29(7), 831–839. CrossRefGoogle Scholar
  13. Bienstock, D., & Seymour, P. D. (1991). Monotonicity in graph searching. Journal of Algorithms, 12(2), 239–245. MathSciNetMATHCrossRefGoogle Scholar
  14. Bopardikar, S. D., Bullo, F., & Hespanha, J. P. (2007). Sensing limitations in the Lion and Man problem. In Proc. American control conference (pp. 5958–5963). CrossRefGoogle Scholar
  15. Borie, R., Tovey, C., & Koenig, S. (2009). Algorithms and complexity results for pursuit-evasion problems. In Proc. international joint conference on artificial intelligence (pp. 59–66). Google Scholar
  16. Bourgault, F., Furukawa, T., & Durrant-Whyte, H. F. (2003). Coordinated decentralized search for a lost target in a Bayesian world. In Proc. IEEE/RSJ international conference on intelligent robots and systems (pp. 48–53). Google Scholar
  17. Bourgault, F., Furukawa, T., & Durrant-Whyte, H. F. (2006). Optimal search for a lost target in a Bayesian world. Field and Service Robotics, 24, 209–222. CrossRefGoogle Scholar
  18. Chew, M. C. (1967). A sequential search procedure. Annals of Mathematical Statistics, 38(2), 494–502. MathSciNetMATHCrossRefGoogle Scholar
  19. Chew, M. C., & Milton, C. (1973). Optimal stopping in a discrete search problem. Operations Research, 21(3), 741–747. MathSciNetMATHCrossRefGoogle Scholar
  20. Dambreville, F., & Cadre, J. P. L. (2002). Search game for a moving target with dynamically generated informations. In Proc. international conference on information fusion (pp. 243–250). Google Scholar
  21. Dobbie, J. M. (1968). A survey of search theory. Operations Research, 16(3), 525–537. MATHCrossRefGoogle Scholar
  22. Dobbie, J. M. (1973). Some search problems with false contacts. Operations Research, 21(4), 907–925. MathSciNetMATHCrossRefGoogle Scholar
  23. Eagle, J. N., & Yee, J. R. (1990). An optimal branch-and-bound procedure for the constrained path, moving target search problem. Operations Research, 38(1), 110–114. MathSciNetMATHCrossRefGoogle Scholar
  24. Eaton, J., & Zadeh, L. (1962). Optimal pursuit strategies in discrete-state probabilistic systems. Journal of Basic Engineering, 84, 23–28. MathSciNetGoogle Scholar
  25. Fomin, F. V., & Thilikos, D. M. (2008). An annotated bibliography on guaranteed graph searching. Theoretical Computer Science, 399(3), 236–245. MathSciNetMATHCrossRefGoogle Scholar
  26. Gerkey, B., Thrun, S., & Gordon, G. (2005). Parallel stochastic hill-climbing with small teams. In Proc. international NRL workshop on multi-robot systems. Google Scholar
  27. Goldstein, A. S., & Reingold, E. M. (1995). The complexity of pursuit on a graph. Theoretical Computer Science, 143(1), 93–112. MathSciNetMATHGoogle Scholar
  28. Goodrich, M., Morse, B., Gerhardt, D., Cooper, J., Quigley, M., Adams, J., & Humphrey, C. (2008). Supporting wilderness search using a camera-equipped UAV. Journal of Field Robotics, 25(1–2), 89–110. CrossRefGoogle Scholar
  29. Guibas, L., Latombe, J., LaValle, S., Lin, D., & Motwani, R. (1999). Visibility-based pursuit-evasion in a polygonal environment. International Journal of Computational Geometry and Applications, 9(5), 471–494. MathSciNetCrossRefGoogle Scholar
  30. Hespanha, J., Prandini, M., & Sastry, S. (2000). Probabilistic pursuit-evasion games: a one-step Nash approach. In Proc. IEEE conference on decision and control (pp. 2272–2277). Google Scholar
  31. Hohzaki, R. (2007). Discrete search allocation game with false contacts. Naval Research Logistics, 54(1), 46–58. MathSciNetMATHCrossRefGoogle Scholar
  32. Hollinger, G., Singh, S., Djugash, J., & Kehagias, A. (2009). Efficient multi-robot search for a moving target. The International Journal of Robotics Research, 28(2), 201–219. CrossRefGoogle Scholar
  33. Hollinger, G., Kehagias, A., & Singh, S. (2010a). GSST: anytime guaranteed search. Autonomous Robots, 29(1), 99–118. CrossRefGoogle Scholar
  34. Hollinger, G., Kehagias, A., & Singh, S. (2010b). Improving the efficiency of clearing with multi-agent teams. The International Journal of Robotics Research, 29(8), 1088–1105. CrossRefGoogle Scholar
  35. Isler, V., & Karnad, N. (2008). The role of information in the cop-robber game. Theoretical Computer Science, 3(399), 179–190 Special issue on graph searching. MathSciNetCrossRefGoogle Scholar
  36. Isler, V., Kannan, S., & Khanna, S. (2005). Randomized pursuit-evasion in a polygonal environment. IEEE Transactions on Robotics, 21(5), 875–884. CrossRefGoogle Scholar
  37. Isler, V., Kannan, S., & Khanna, S. (2006). Randomized pursuit-evasion with local visibility. SIAM Journal on Discrete Mathematics, 1(20), 26–41. MathSciNetCrossRefGoogle Scholar
  38. Jankovic, V. (1978). About a man and lions. Matematički Vesnik, 2, 359–361. MathSciNetGoogle Scholar
  39. Kadane, J. (1971). Optimal whereabouts search. Operations Research, 19(4), 894–904. MathSciNetMATHCrossRefGoogle Scholar
  40. Kalbaugh, D. (1992). Optimal search among false contacts. SIAM Journal on Applied Mathematics, 52(6), 1722–1750. MathSciNetMATHCrossRefGoogle Scholar
  41. Karnad, N., & Isler, V. (2008). Bearing-only pursuit. In Proc. IEEE international conference on robotics and automation (pp. 2665–2670). Google Scholar
  42. Katsilieris, F., Lindhé, M., Dimarogonas, D., Ögren, P., & Johansson, K. (2010). Demonstration of multi-robot search and secure. In Proc. ICRA workshop on search and pursuit/evasion. Google Scholar
  43. Kimeldorf, G., & Smith, F. (1979). Binomial searching for a random number of multinomially hidden objects. Management Science, 25(11), 1115–1126. MathSciNetMATHCrossRefGoogle Scholar
  44. Kolling, A., & Carpin, S. (2010). Pursuit-evasion on trees by robot teams. IEEE Transactions on Robotics, 26(1), 32–47. CrossRefGoogle Scholar
  45. Kolling, A., Kleiner, A., Lewis, M., & Sycara, K. (2010). Pursuit-evasion in 2.5D based on team-visibility. In Proc. IEEE/RSJ international conference on intelligent robots and systems (pp. 4610–4616). Google Scholar
  46. Kolling, A., Kleiner, A., Lewis, M., & Sycara, K. (2011). Computing and executing strategies for moving target search. In Proc. IEEE international conference on robotics and automation (pp. 4246–423). Google Scholar
  47. Koopman, B. O. (1956a). The theory of search. Part I. Kinematic bases. Operations Research, 4(5), 324–346. MathSciNetCrossRefGoogle Scholar
  48. Koopman, B. O. (1956b). The theory of search. Part II. Target detection. Operations Research, 4(5), 503–531. MathSciNetCrossRefGoogle Scholar
  49. Koopman, B. O. (1957). The theory of search. Part III. The optimum distribution of searching effort. Operations Research, 5(5), 613–626. MathSciNetCrossRefGoogle Scholar
  50. Koopman, B. O. (1979). Search and its optimization. The American Mathematical Monthly, 86(7), 527–540. MathSciNetMATHCrossRefGoogle Scholar
  51. Kopparty, S., & Ravishankar, C. V. (2005). A framework for pursuit evasion games in Rn. Information Processing Letters, 96(3), 114–122. MathSciNetMATHCrossRefGoogle Scholar
  52. Kress, M., Lin, K. Y., & Szechtman, R. (2008). Optimal discrete search with imperfect specificity. Mathematical Methods of Operations Research, 68(3), 539–549. MathSciNetMATHCrossRefGoogle Scholar
  53. LaPaugh, A. S. (1993). Recontamination does not help to search a graph. Journal of the Association for Computing Machinery, 40(2), 224–245. MathSciNetMATHCrossRefGoogle Scholar
  54. Lau, H., Huang, S., & Dissanayake, G. (2005). Optimal search for multiple targets in a built environment. In Proc. IEEE/RSJ international conference on intelligent robots and systems (pp. 3740–3745). CrossRefGoogle Scholar
  55. Lau, H., Huang, S., & Dissanayake, G. (2006). Probabilistic search for a moving target in an indoor environment. In Proc. IEEE/RSJ international conference on intelligent robots and systems (pp. 3393–3398). CrossRefGoogle Scholar
  56. LaValle, S. M. (2006). Planning algorithms. Cambridge: Cambridge University Press. MATHCrossRefGoogle Scholar
  57. LaValle, S., Lin, D., Guibas, L., Latombe, J., & Motwani, R. (1997). Finding an unpredictable target in a workspace with obstacles. In Proc. IEEE international conference on robotics and automation (pp. 737–742). Google Scholar
  58. Lazebnik, S. (2001). Visibility-based pursuit-evasion in three-dimensional environments. Technical report, CVR-TR-2001-01, Beckman Institute, University of Illinois at Urbana-Champaign. Google Scholar
  59. Lenstra, J. K., & Kan, A. H. G. R. (1981). Complexity of vehicle routing and scheduling problems. Networks, 11(2), 221–227. CrossRefGoogle Scholar
  60. Littlewood, J. E. (1953). A mathematician’s miscellany. London: Methuen & Co. MATHGoogle Scholar
  61. McCue, B. (1990). U-boats in the bay of Biscay: an essay in operations analysis. National Defense University Press. Google Scholar
  62. Megiddo, N., Hakimi, S., Garey, M., Johnson, D., & Papadimitriou, C. (1988). The complexity of searching a graph. Journal of the Association for Computing Machinery, 35(1), 18–44. MathSciNetMATHCrossRefGoogle Scholar
  63. Murrieta-Cid, R., Muppirala, T., Sarmiento, A., Bhattacharya, S., & Hutchinson, S. (2007). Surveillance strategies for a pursuer with finite sensor range. The International Journal of Robotics Research, 26(3), 233–253. CrossRefGoogle Scholar
  64. Nowakowski, R., & Winkler, P. (1983). Vertex-to-vertex pursuit in a graph. Discrete Mathematics, 43(2–3), 235–239. MathSciNetMATHCrossRefGoogle Scholar
  65. Ong, S. C. W., Png, S. W., Hsu, D., & Lee, W. S. (2010). Planning under uncertainty for robotic tasks with mixed observability. The International Journal of Robotics Research, 29(8), 1053–1068. CrossRefGoogle Scholar
  66. Park, S.-M., Lee, J.-H., & Chwa, K.-Y. (2001). Visibility-based pursuit-evasion in a polygonal region by a searcher. In Proc. international colloquium on automata, languages and programming (pp. 456–468). CrossRefGoogle Scholar
  67. Parsons, T. (1976). Pursuit-evasion in a graph. In Y. Alavi & D. Lick (Eds.), Theory and applications of graphs (pp. 426–441). Berlin: Springer. Google Scholar
  68. Ross, S. M. (1969). A problem in optimal search and stop. Operations Research, 17(6), 984–992. MathSciNetMATHCrossRefGoogle Scholar
  69. Roy, N., Gordon, G., & Thrun, S. (2005). Finding approximate POMDP solutions through belief compression. The Journal of Artificial Intelligence Research, 23, 1–40. MATHCrossRefGoogle Scholar
  70. Sato, H., & Royset, J. O. (2010). Path optimization for the resource-constrained searcher. Naval Research Logistics, 57(5), 422–440. MathSciNetMATHGoogle Scholar
  71. Sgall, J. (2001). Solution of David Gale’s lion and man problem. Theoretical Computer Science, 259(1–2), 663–670. MathSciNetMATHCrossRefGoogle Scholar
  72. Stone, L. D. (1989a). Theory of optimal search (2nd edn.). San Diego: Academic Press. Google Scholar
  73. Stone, L. D. (1989b). What’s happened in search theory since the 1975 Lanchester prize? Operations Research, 37(3), 501–506. MathSciNetCrossRefGoogle Scholar
  74. Tisdale, J., Kim, Z., & Hedrick, J. K. (2009). Autonomous path planning and estimation using UAVs. IEEE Robotics & Automation Magazine, 16(2), 35–42. CrossRefGoogle Scholar
  75. Toth, P., & Vigo, D. (2002). The vehicle routing problem. Philadelphia: Society for Industrial Mathematics. MATHCrossRefGoogle Scholar
  76. Trummel, K. E., & Weisinger, J. R. (1986). The complexity of the optimal searcher path problem. Operations Research, 34(2), 324–327. MathSciNetMATHCrossRefGoogle Scholar
  77. Vidal, R., Shakernia, O., Kim, H. J., Shim, D. H., & Sastry, S. (2002). Probabilistic pursuit-evasion games: theory, implementation, and experimental evaluation. IEEE transactions on robotics and automation, 18(5), 662–669. CrossRefGoogle Scholar
  78. Vieira, M., Govindan, R., & Sukhatme, G. S. (2009). Scalable and practical pursuit-evasion with networked robots. Journal of Intelligent Service Robotics, 2(4), 247–263. CrossRefGoogle Scholar
  79. Wagner, D. H. (1999). Naval operations analysis. Annapolis: United States Naval Institute. Google Scholar
  80. Washburn, A. R. (1983). Search for a moving target: the FAB algorithm. Operations Research, 31(4), 739–751. MATHCrossRefGoogle Scholar
  81. Washburn, A. R. (1998). Branch and bound methods for a search problem. Naval Research Logistics, 45(3), 243–257. MathSciNetMATHCrossRefGoogle Scholar
  82. Washburn, A. R. (2002). Search and detection. Topics in operations research series (4th edn.) INFORMS. Google Scholar
  83. Wegener, I. (1985). Optimal search with positive switch cost is NP-hard. Information Processing Letters, 21(1), 49–52. MathSciNetMATHCrossRefGoogle Scholar
  84. Wong, E.-M., Bourgault, F., & Furukawa, T. (2005). Multi-vehicle Bayesian search for multiple lost targets. In Proc. IEEE international conference on robotics and automation (pp. 3169–3174). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Timothy H. Chung
    • 1
  • Geoffrey A. Hollinger
    • 2
  • Volkan Isler
    • 3
  1. 1.Department of Systems Engineering, Graduate School of Engineering and Applied SciencesNaval Postgraduate SchoolMontereyUSA
  2. 2.Computer Science Department, Viterbi School of EngineeringUniversity of Southern CaliforniaLos AngelesUSA
  3. 3.Department of Computer Science and Engineering, College of Science and EngineeringUniversity of MinnesotaMinneapolisUSA

Personalised recommendations