Toward simple control for complex, autonomous robotic applications: combining discrete and rhythmic motor primitives

Abstract

Vertebrates are able to quickly adapt to new environments in a very robust, seemingly effortless way. To explain both this adaptivity and robustness, a very promising perspective in neurosciences is the modular approach to movement generation: Movements results from combinations of a finite set of stable motor primitives organized at the spinal level. In this article we apply this concept of modular generation of movements to the control of robots with a high number of degrees of freedom, an issue that is challenging notably because planning complex, multidimensional trajectories in time-varying environments is a laborious and costly process. We thus propose to decrease the complexity of the planning phase through the use of a combination of discrete and rhythmic motor primitives, leading to the decoupling of the planning phase (i.e. the choice of behavior) and the actual trajectory generation. Such implementation eases the control of, and the switch between, different behaviors by reducing the dimensionality of the high-level commands. Moreover, since the motor primitives are generated by dynamical systems, the trajectories can be smoothly modulated, either by high-level commands to change the current behavior or by sensory feedback information to adapt to environmental constraints. In order to show the generality of our approach, we apply the framework to interactive drumming and infant crawling in a humanoid robot. These experiments illustrate the simplicity of the control architecture in terms of planning, the integration of different types of feedback (vision and contact) and the capacity of autonomously switching between different behaviors (crawling and simple reaching).

This is a preview of subscription content, log in to check access.

References

  1. Bernstein, N. (1967). The co-ordination and regulation of movements. London: Pergamon.

    Google Scholar 

  2. Bizzi, E., Accornero, N., Chapple, W., & Hogan, N. (1984). Posture control and trajectory formation during arm movement. The Journal of Neuroscience, 4(11), 2738–2744.

    Google Scholar 

  3. Bizzi, E., Cheung, V. C. K., d’Avella, A., Saltiel, P., & Tresch, M. (2008). Combining modules for movement. Brain Research Reviews, 57(1), 125–33.

    Article  Google Scholar 

  4. Buchli, J., & Ijspeert, A. J. (2008). Self-organized adaptive legged locomotion in a compliant quadruped robot. Autonomous Robots, 25(4), 331–347.

    Article  Google Scholar 

  5. Buchli, J., Righetti, L., & Ijspeert, A. (2008). Frequency analysis with coupled nonlinear oscillators. Physica D, 237, 1705–1718.

    MathSciNet  MATH  Article  Google Scholar 

  6. Bullock, D., & Grossberg, S. (1988). The VITE model: a neural command circuit for generating arm and articulator trajectories. In J. Kelso, A. Mandell, & M. Shlesinger (Eds.), Dynamic patterns in complex systems (pp. 206–305). Singapore: World Scientific.

    Google Scholar 

  7. Capaday, C. (2002). The special nature of human walking and its neural control. Trends in Neurosciences, 25(7), 370–376.

    Article  Google Scholar 

  8. Cui, X., Zhu, Y., Zang, X., Tang, S., & Zhao, J. (2010). CPG based locomotion control of pitch-yaw connecting modular self-reconfigurable robots. In Information and automation (ICIA), 2010 IEEE international conference on (pp. 1410–1415).

    Google Scholar 

  9. De Rugy, A., & Sternad, D. (2003). Interaction between discrete and rhythmic movements: reaction time and phase of discrete movement initiation during oscillatory movements. Brain Research, 994(2), 160–174.

    Article  Google Scholar 

  10. Degallier, S., & Ijspeert, A. (2010). Modeling discrete and rhythmic movements through motor primitives: a review. Biological Cybernetics, 103(4), 319–338.

    Article  Google Scholar 

  11. Degallier, S., Santos, C. P., Righetti, L., & Ijspeert, A. (2006). Movement generation using dynamical systems: a humanoid robot performing a drumming task. In IEEE-RAS inter. conf. on humanoid robots (pp. 512–517).

    Google Scholar 

  12. Degallier, S., Righetti, L., & Ijspeert, A. (2007). Hand placement during quadruped locomotion in a humanoid robot: a dynamical system approach. In IEEE-RAS international conference on intelligent robots and systems (IROS07).

    Google Scholar 

  13. Degallier, S., Righetti, L., Natale, L., Nori, F., Metta, G., & Ijspeert, A. (2008). A modular bio-inspired architecture for movement generation for the infant-like robot icub. In Proceedings of the second IEEE RAS/EMBS international conference on biomedical robotics and biomechatronics, BioRob.

    Google Scholar 

  14. Fitts, P. (1954). The information capacity of the human motor system in controlling the amplitude of movement. Journal of Experimental Psychology, 47(6), 381–391.

    Article  Google Scholar 

  15. Fitzpatrick, P., Metta, G., & Natale, L. (2008). Towards long-lived robot genes. Robotics and Autonomous Systems, 56(1), 29–45.

    Article  Google Scholar 

  16. Frigon, S., & Rossignol, S. (2006). Experiments and models of sensorimotor interactions during locomotion. Biological Cybernetics, 95(6), 607–627.

    MATH  Article  Google Scholar 

  17. Gay, S., Degallier, S., Pattacini, U., Ijspeert, A., & Santos, J. (2010). Integration of vision and central pattern generator based locomotion for path planning of a nonholonomic crawling humanoid robot. In Proceedings of the 2010 IEEE/RSJ international conference on intelligent robots and systems (IROS 2010), Taipei.

    Google Scholar 

  18. Gribovskaya, E., & Billard, A. (2008). Combining dynamical systems control and programming by demonstration for teaching discrete bimanual coordination tasks to a humanoid robot. In Proceedings of 3rd ACM/IEEE international conference on human-robot interaction, HRI’08, Amsterdam, 12–15 March 2008.

    Google Scholar 

  19. Grillner, S. (2006). Biological pattern generation: the cellular and computational logic of networks in motion. Neuron, 52(5), 751–766.

    Article  Google Scholar 

  20. Hersch, M., & Billard, A. (2008). Reaching with multi-referential dynamical systems. Autonomous Robots, 25(1–2), 71–83.

    Article  Google Scholar 

  21. Ijspeert, A., Nakanishi, J., & Schaal, S. (2002). Learning rhythmic movements by demonstration using nonlinear oscillators. In Proceedings of the IEEE/RSJ int. conference on intelligent robots and systems (IROS2002) (pp. 958–963).

    Google Scholar 

  22. Ijspeert, A. J., Nakanishi, J., & Schaal, S. (2003). Learning attractor landscapes for learning motor primitives. In S. T. Becker & K. Obermayer (Eds.), Neural information processing systems 15 (NIPS2002) (pp. 1547–1554).

    Google Scholar 

  23. Kalakrishnan, M., Buchli, J., Pastor, P., Mistry, M., & Schaal, S. (2010). Fast, robust quadruped locomotion over challenging terrain. In IEEE international conference on robotics and automation (ICRA10).

    Google Scholar 

  24. Kelso, J. A. S., Southard, D. L., & Goodman, D. (1979). On the nature of human interlimb coordination. Science, 203(4384), 1029–1031.

    Article  Google Scholar 

  25. Khatib, O. (1980). Commande dynamique dans l’espace opérationnel des robots manipulateurs en présence d’obstacles. PhD thesis, Ecole Nationale Supérieure de l’aéronautique et de l’espace, Toulouse, France.

  26. Khatib, O. (1986). Real-time obstacle avoidance for manipulators and mobile robots. The International Journal of Robotics Research, 5(1), 90–98.

    MathSciNet  Article  Google Scholar 

  27. Kimura, H., Fukuoka, Y., & Cohen, A. H. (2007). Adaptive dynamic walking of a quadruped robot on natural ground based on biological concepts. The International Journal of Robotics Research, 26(5), 475–490.

    Article  Google Scholar 

  28. Kober, J., & Peters, J. (2010). Imitation and reinforcement learning. IEEE Robotics & Automation Magazine, 17(2), 55–62.

    Article  Google Scholar 

  29. Kose-Bagci, H., Dautenhahn, K., Syrdal, D. S., & Nehaniv, C. L. (2010). Drum-mate: interaction dynamics and gestures in human-humanoid drumming experiments. Connection Science, 22(2), 103–134.

    Article  Google Scholar 

  30. Matsuoka, K. (1985). Sustained oscillations generated by mutually inhibiting neurons with adaptation. Biological Cybernetics, 52, 367–376.

    MathSciNet  MATH  Article  Google Scholar 

  31. Maufroy, C., Kimura, H., & Takase, K. (2008). Towards a general neural controller for quadrupedal locomotion. Neural Networks, 21(4), 667–681.

    Article  Google Scholar 

  32. Michel, O. (2004). Webots tm: Professional mobile robot simulation. International Journal of Advanced Robotic Systems, 1, 39–42.

    Google Scholar 

  33. Pastor, P., Hoffmann, H., Asfour, T., & Schaal, S. (2009). Learning and generalization of motor skills by learning from demonstration. In International conference on robotics and automation (ICRA 2009).

    Google Scholar 

  34. Righetti, L. (2008). Control of legged locomotion using dynamical systems. PhD thesis, EPFL, Lausanne.

  35. Righetti, L., & Ijspeert, A. (2006a). Design methodologies for central pattern generators: an application to crawling humanoids. In Proceedings of robotics: science and systems, Philadelphia, USA.

    Google Scholar 

  36. Righetti, L., & Ijspeert, A. (2006b). Programmable central pattern generators: an application to biped locomotion control. In Proceedings of the 2006 IEEE international conference on robotics and automation.

    Google Scholar 

  37. Righetti, L., & Ijspeert, A. (2008). Pattern generators with sensory feedback for the control of quadruped locomotion. In Proceedings of the 2008 IEEE international conference on robotics and automation (ICRA 2008) (pp. 819–824).

    Google Scholar 

  38. Righetti, L., Buchli, J., & Ijspeert, A. (2006). Dynamic hebbian learning in adaptive frequency oscillators. Physica D, 216(2), 269–281.

    MathSciNet  MATH  Article  Google Scholar 

  39. Ronsse, R., Sternad, D., & Lefèvre, P. (2009). A computational model for rhythmic and discrete movements in uni- and bimanual coordination. Neural Computation, 21(5), 1335–1370.

    MathSciNet  MATH  Article  Google Scholar 

  40. Ronsse, R., Vitiello, N., Lenzi, T., van den Kieboom, J., Carrozza, M., & Ijspeert, A. (2010). Human-robot synchrony: flexible assistance using adaptive oscillators. IEEE Transactions on Biomedical Engineering, (99), 1. doi:10.1109/TBME.2010.2089629

  41. Schaal, S., Kotosaka, S., & Sternad, D. (2000). Nonlinear dynamical systems as movement primitives. In International conference on humanoid robotics (Humanoids00) (pp. 117–124). Berlin: Springer.

    Google Scholar 

  42. Schoener, G. (1990). A dynamic theory of coordination of discrete movement. Biological Cybernetics, 63, 257–270.

    MathSciNet  Article  Google Scholar 

  43. Schoener, G., & Kelso, J. A. S. (1988). Dynamic pattern generation in behavioral and neural systems. Science, 239(4847), 1513–1520.

    Article  Google Scholar 

  44. Schoener, G., & Santos, C. (2001). Control of movement time and sequential action through attractor dynamics: a simulation study demonstrating object interception and coordination. In Neurons, networks, and motor behavior.

    Google Scholar 

  45. Schoener, G., Dose, M., & Engels, C. (1995). Dynamics of behavior: theory and applications for autonomous robot architectures. Robotics and Autonomous Systems, 16(2–4), 213–245.

    Article  Google Scholar 

  46. Sentis, L., & Khatib, O. (2005). Synthesis of whole-body behaviors through hierarchical control of behavioral primitives. International Journal of Humanoid Robotics, 2(4), 505–518.

    Article  Google Scholar 

  47. Sproewitz, A., Pouya, S., Bonardi, S., van den Kieboom, J., Moeckel, R., Billard, A., Dillenbourg, P., & Ijspeert, A. (2010). Roombots: reconfigurable robots for adaptive furniture. IEEE Computational Intelligence Magazine, special issue on “Evolutionary and developmental approaches to robotics”.

  48. Steinhage, A., & Bergener, T. (1998). Dynamical systems for the behavioral organization of an anthropomorphic mobile robot. In Proceedings of the fifth international conference on simulation of adaptive behavior on from animals to animats 5 (pp. 147–152). Cambridge: MIT Press.

    Google Scholar 

  49. Tsagarakis, N., Metta, G., Sandini, G., Vernon, D., Beira, R., Becchi, F., Righetti, L., Santos-Victor, J., Ijspeert, A., Carrozza, M., & Caldwell, D. (2007). iCub—the design and realization of an open humanoid platform for cognitive and neuroscience research. International Journal of Advanced Robotics, 21(10), 1151–1175. Special Issue on Robotic platforms for Research in Neuroscience.

    Article  Google Scholar 

  50. Tuma, M., Iossifidis, I., & Schoner, G. (2009). Temporal stabilization of discrete movement in variable environments: an attractor dynamics approach. In Robotics and automation, 2009. ICRA ’09. IEEE international conference on (pp. 863–868).

    Google Scholar 

  51. Turvey, M. (1990). Coordination. The American Psychologist, 45(8), 938–953.

    Article  Google Scholar 

  52. Ude, A., Gams, A., Asfour, T., & Morimoto, J. (2010). Task-specific generalization of discrete and periodic dynamic movement primitives. IEEE Transactions on Robotics, 26(5), 800–815.

    Article  Google Scholar 

  53. Wächter, A., & Biegler, L. T. (2006). On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming, 106, 25–57.

    MathSciNet  MATH  Article  Google Scholar 

  54. Wagner, D., & Schmalstieg, D. (2007). Artoolkitplus for pose tracking on mobile devices. In Proceedings of 12th computer vision winter workshop (CVWW’07).

    Google Scholar 

  55. Williamson, M. (1999). Robot arm control exploiting natural dynamics. PhD thesis, MIT Department of Electrical Engineering and Computer Science.

  56. Won, J., & Hogan, N. (1995). Stability properties of human reaching movements. Experimental Brain Research, 107(1), 125–136.

    Article  Google Scholar 

  57. Zico Kolter, J., & Ng, A. Y. (2009). Task-space trajectories via cubic spline optimization. In Proceedings of the 2009 IEEE international conference on robotics and automation, Kobe, Japan (pp. 2364–2371). New York: IEEE Press.

    Google Scholar 

  58. Zucker, M., Bagnell, J. A. D., Atkeson, C., & Kuffner, J. (2010). An optimization approach to rough terrain locomotion. In IEEE conference on robotics and automation.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sarah Degallier.

Additional information

This work was supported by the European Commission’s Cognition Unit, projects RobotCub and AMARSi. S.G. is funded by a IST-EPFL grant.

Electronic Supplementary Material

Below are the links to the electronic supplementary material.

(MPG 26.3 MB)

(MPG 2.39 MB)

(MPG 1.87 MB)

(MPG 3.30 MB)

(MPG 3.01 MB)

(AVI 2.43 MB)

(AVI 7.85 MB)

(AVI 9.05 MB)

(AVI 18.5 MB)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Degallier, S., Righetti, L., Gay, S. et al. Toward simple control for complex, autonomous robotic applications: combining discrete and rhythmic motor primitives. Auton Robot 31, 155–181 (2011). https://doi.org/10.1007/s10514-011-9235-2

Download citation

Keywords

  • CPGs
  • Motor primitive
  • Adaptive behaviors
  • Dynamical systems
  • Humanoid robots
  • Bio-Inspiration
  • Drumming
  • Locomotion