Skip to main content
Log in

Toward simple control for complex, autonomous robotic applications: combining discrete and rhythmic motor primitives

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

Vertebrates are able to quickly adapt to new environments in a very robust, seemingly effortless way. To explain both this adaptivity and robustness, a very promising perspective in neurosciences is the modular approach to movement generation: Movements results from combinations of a finite set of stable motor primitives organized at the spinal level. In this article we apply this concept of modular generation of movements to the control of robots with a high number of degrees of freedom, an issue that is challenging notably because planning complex, multidimensional trajectories in time-varying environments is a laborious and costly process. We thus propose to decrease the complexity of the planning phase through the use of a combination of discrete and rhythmic motor primitives, leading to the decoupling of the planning phase (i.e. the choice of behavior) and the actual trajectory generation. Such implementation eases the control of, and the switch between, different behaviors by reducing the dimensionality of the high-level commands. Moreover, since the motor primitives are generated by dynamical systems, the trajectories can be smoothly modulated, either by high-level commands to change the current behavior or by sensory feedback information to adapt to environmental constraints. In order to show the generality of our approach, we apply the framework to interactive drumming and infant crawling in a humanoid robot. These experiments illustrate the simplicity of the control architecture in terms of planning, the integration of different types of feedback (vision and contact) and the capacity of autonomously switching between different behaviors (crawling and simple reaching).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bernstein, N. (1967). The co-ordination and regulation of movements. London: Pergamon.

    Google Scholar 

  • Bizzi, E., Accornero, N., Chapple, W., & Hogan, N. (1984). Posture control and trajectory formation during arm movement. The Journal of Neuroscience, 4(11), 2738–2744.

    Google Scholar 

  • Bizzi, E., Cheung, V. C. K., d’Avella, A., Saltiel, P., & Tresch, M. (2008). Combining modules for movement. Brain Research Reviews, 57(1), 125–33.

    Article  Google Scholar 

  • Buchli, J., & Ijspeert, A. J. (2008). Self-organized adaptive legged locomotion in a compliant quadruped robot. Autonomous Robots, 25(4), 331–347.

    Article  Google Scholar 

  • Buchli, J., Righetti, L., & Ijspeert, A. (2008). Frequency analysis with coupled nonlinear oscillators. Physica D, 237, 1705–1718.

    Article  MathSciNet  MATH  Google Scholar 

  • Bullock, D., & Grossberg, S. (1988). The VITE model: a neural command circuit for generating arm and articulator trajectories. In J. Kelso, A. Mandell, & M. Shlesinger (Eds.), Dynamic patterns in complex systems (pp. 206–305). Singapore: World Scientific.

    Google Scholar 

  • Capaday, C. (2002). The special nature of human walking and its neural control. Trends in Neurosciences, 25(7), 370–376.

    Article  Google Scholar 

  • Cui, X., Zhu, Y., Zang, X., Tang, S., & Zhao, J. (2010). CPG based locomotion control of pitch-yaw connecting modular self-reconfigurable robots. In Information and automation (ICIA), 2010 IEEE international conference on (pp. 1410–1415).

    Chapter  Google Scholar 

  • De Rugy, A., & Sternad, D. (2003). Interaction between discrete and rhythmic movements: reaction time and phase of discrete movement initiation during oscillatory movements. Brain Research, 994(2), 160–174.

    Article  Google Scholar 

  • Degallier, S., & Ijspeert, A. (2010). Modeling discrete and rhythmic movements through motor primitives: a review. Biological Cybernetics, 103(4), 319–338.

    Article  Google Scholar 

  • Degallier, S., Santos, C. P., Righetti, L., & Ijspeert, A. (2006). Movement generation using dynamical systems: a humanoid robot performing a drumming task. In IEEE-RAS inter. conf. on humanoid robots (pp. 512–517).

    Chapter  Google Scholar 

  • Degallier, S., Righetti, L., & Ijspeert, A. (2007). Hand placement during quadruped locomotion in a humanoid robot: a dynamical system approach. In IEEE-RAS international conference on intelligent robots and systems (IROS07).

    Google Scholar 

  • Degallier, S., Righetti, L., Natale, L., Nori, F., Metta, G., & Ijspeert, A. (2008). A modular bio-inspired architecture for movement generation for the infant-like robot icub. In Proceedings of the second IEEE RAS/EMBS international conference on biomedical robotics and biomechatronics, BioRob.

    Google Scholar 

  • Fitts, P. (1954). The information capacity of the human motor system in controlling the amplitude of movement. Journal of Experimental Psychology, 47(6), 381–391.

    Article  Google Scholar 

  • Fitzpatrick, P., Metta, G., & Natale, L. (2008). Towards long-lived robot genes. Robotics and Autonomous Systems, 56(1), 29–45.

    Article  Google Scholar 

  • Frigon, S., & Rossignol, S. (2006). Experiments and models of sensorimotor interactions during locomotion. Biological Cybernetics, 95(6), 607–627.

    Article  MATH  Google Scholar 

  • Gay, S., Degallier, S., Pattacini, U., Ijspeert, A., & Santos, J. (2010). Integration of vision and central pattern generator based locomotion for path planning of a nonholonomic crawling humanoid robot. In Proceedings of the 2010 IEEE/RSJ international conference on intelligent robots and systems (IROS 2010), Taipei.

    Google Scholar 

  • Gribovskaya, E., & Billard, A. (2008). Combining dynamical systems control and programming by demonstration for teaching discrete bimanual coordination tasks to a humanoid robot. In Proceedings of 3rd ACM/IEEE international conference on human-robot interaction, HRI’08, Amsterdam, 12–15 March 2008.

    Google Scholar 

  • Grillner, S. (2006). Biological pattern generation: the cellular and computational logic of networks in motion. Neuron, 52(5), 751–766.

    Article  Google Scholar 

  • Hersch, M., & Billard, A. (2008). Reaching with multi-referential dynamical systems. Autonomous Robots, 25(1–2), 71–83.

    Article  Google Scholar 

  • Ijspeert, A., Nakanishi, J., & Schaal, S. (2002). Learning rhythmic movements by demonstration using nonlinear oscillators. In Proceedings of the IEEE/RSJ int. conference on intelligent robots and systems (IROS2002) (pp. 958–963).

    Google Scholar 

  • Ijspeert, A. J., Nakanishi, J., & Schaal, S. (2003). Learning attractor landscapes for learning motor primitives. In S. T. Becker & K. Obermayer (Eds.), Neural information processing systems 15 (NIPS2002) (pp. 1547–1554).

    Google Scholar 

  • Kalakrishnan, M., Buchli, J., Pastor, P., Mistry, M., & Schaal, S. (2010). Fast, robust quadruped locomotion over challenging terrain. In IEEE international conference on robotics and automation (ICRA10).

    Google Scholar 

  • Kelso, J. A. S., Southard, D. L., & Goodman, D. (1979). On the nature of human interlimb coordination. Science, 203(4384), 1029–1031.

    Article  Google Scholar 

  • Khatib, O. (1980). Commande dynamique dans l’espace opérationnel des robots manipulateurs en présence d’obstacles. PhD thesis, Ecole Nationale Supérieure de l’aéronautique et de l’espace, Toulouse, France.

  • Khatib, O. (1986). Real-time obstacle avoidance for manipulators and mobile robots. The International Journal of Robotics Research, 5(1), 90–98.

    Article  MathSciNet  Google Scholar 

  • Kimura, H., Fukuoka, Y., & Cohen, A. H. (2007). Adaptive dynamic walking of a quadruped robot on natural ground based on biological concepts. The International Journal of Robotics Research, 26(5), 475–490.

    Article  Google Scholar 

  • Kober, J., & Peters, J. (2010). Imitation and reinforcement learning. IEEE Robotics & Automation Magazine, 17(2), 55–62.

    Article  Google Scholar 

  • Kose-Bagci, H., Dautenhahn, K., Syrdal, D. S., & Nehaniv, C. L. (2010). Drum-mate: interaction dynamics and gestures in human-humanoid drumming experiments. Connection Science, 22(2), 103–134.

    Article  Google Scholar 

  • Matsuoka, K. (1985). Sustained oscillations generated by mutually inhibiting neurons with adaptation. Biological Cybernetics, 52, 367–376.

    Article  MathSciNet  MATH  Google Scholar 

  • Maufroy, C., Kimura, H., & Takase, K. (2008). Towards a general neural controller for quadrupedal locomotion. Neural Networks, 21(4), 667–681.

    Article  Google Scholar 

  • Michel, O. (2004). Webots tm: Professional mobile robot simulation. International Journal of Advanced Robotic Systems, 1, 39–42.

    Google Scholar 

  • Pastor, P., Hoffmann, H., Asfour, T., & Schaal, S. (2009). Learning and generalization of motor skills by learning from demonstration. In International conference on robotics and automation (ICRA 2009).

    Google Scholar 

  • Righetti, L. (2008). Control of legged locomotion using dynamical systems. PhD thesis, EPFL, Lausanne.

  • Righetti, L., & Ijspeert, A. (2006a). Design methodologies for central pattern generators: an application to crawling humanoids. In Proceedings of robotics: science and systems, Philadelphia, USA.

    Google Scholar 

  • Righetti, L., & Ijspeert, A. (2006b). Programmable central pattern generators: an application to biped locomotion control. In Proceedings of the 2006 IEEE international conference on robotics and automation.

    Google Scholar 

  • Righetti, L., & Ijspeert, A. (2008). Pattern generators with sensory feedback for the control of quadruped locomotion. In Proceedings of the 2008 IEEE international conference on robotics and automation (ICRA 2008) (pp. 819–824).

    Google Scholar 

  • Righetti, L., Buchli, J., & Ijspeert, A. (2006). Dynamic hebbian learning in adaptive frequency oscillators. Physica D, 216(2), 269–281.

    Article  MathSciNet  MATH  Google Scholar 

  • Ronsse, R., Sternad, D., & Lefèvre, P. (2009). A computational model for rhythmic and discrete movements in uni- and bimanual coordination. Neural Computation, 21(5), 1335–1370.

    Article  MathSciNet  MATH  Google Scholar 

  • Ronsse, R., Vitiello, N., Lenzi, T., van den Kieboom, J., Carrozza, M., & Ijspeert, A. (2010). Human-robot synchrony: flexible assistance using adaptive oscillators. IEEE Transactions on Biomedical Engineering, (99), 1. doi:10.1109/TBME.2010.2089629

  • Schaal, S., Kotosaka, S., & Sternad, D. (2000). Nonlinear dynamical systems as movement primitives. In International conference on humanoid robotics (Humanoids00) (pp. 117–124). Berlin: Springer.

    Google Scholar 

  • Schoener, G. (1990). A dynamic theory of coordination of discrete movement. Biological Cybernetics, 63, 257–270.

    Article  MathSciNet  Google Scholar 

  • Schoener, G., & Kelso, J. A. S. (1988). Dynamic pattern generation in behavioral and neural systems. Science, 239(4847), 1513–1520.

    Article  Google Scholar 

  • Schoener, G., & Santos, C. (2001). Control of movement time and sequential action through attractor dynamics: a simulation study demonstrating object interception and coordination. In Neurons, networks, and motor behavior.

    Google Scholar 

  • Schoener, G., Dose, M., & Engels, C. (1995). Dynamics of behavior: theory and applications for autonomous robot architectures. Robotics and Autonomous Systems, 16(2–4), 213–245.

    Article  Google Scholar 

  • Sentis, L., & Khatib, O. (2005). Synthesis of whole-body behaviors through hierarchical control of behavioral primitives. International Journal of Humanoid Robotics, 2(4), 505–518.

    Article  Google Scholar 

  • Sproewitz, A., Pouya, S., Bonardi, S., van den Kieboom, J., Moeckel, R., Billard, A., Dillenbourg, P., & Ijspeert, A. (2010). Roombots: reconfigurable robots for adaptive furniture. IEEE Computational Intelligence Magazine, special issue on “Evolutionary and developmental approaches to robotics”.

  • Steinhage, A., & Bergener, T. (1998). Dynamical systems for the behavioral organization of an anthropomorphic mobile robot. In Proceedings of the fifth international conference on simulation of adaptive behavior on from animals to animats 5 (pp. 147–152). Cambridge: MIT Press.

    Google Scholar 

  • Tsagarakis, N., Metta, G., Sandini, G., Vernon, D., Beira, R., Becchi, F., Righetti, L., Santos-Victor, J., Ijspeert, A., Carrozza, M., & Caldwell, D. (2007). iCub—the design and realization of an open humanoid platform for cognitive and neuroscience research. International Journal of Advanced Robotics, 21(10), 1151–1175. Special Issue on Robotic platforms for Research in Neuroscience.

    Article  Google Scholar 

  • Tuma, M., Iossifidis, I., & Schoner, G. (2009). Temporal stabilization of discrete movement in variable environments: an attractor dynamics approach. In Robotics and automation, 2009. ICRA ’09. IEEE international conference on (pp. 863–868).

    Chapter  Google Scholar 

  • Turvey, M. (1990). Coordination. The American Psychologist, 45(8), 938–953.

    Article  Google Scholar 

  • Ude, A., Gams, A., Asfour, T., & Morimoto, J. (2010). Task-specific generalization of discrete and periodic dynamic movement primitives. IEEE Transactions on Robotics, 26(5), 800–815.

    Article  Google Scholar 

  • Wächter, A., & Biegler, L. T. (2006). On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming, 106, 25–57.

    Article  MathSciNet  MATH  Google Scholar 

  • Wagner, D., & Schmalstieg, D. (2007). Artoolkitplus for pose tracking on mobile devices. In Proceedings of 12th computer vision winter workshop (CVWW’07).

    Google Scholar 

  • Williamson, M. (1999). Robot arm control exploiting natural dynamics. PhD thesis, MIT Department of Electrical Engineering and Computer Science.

  • Won, J., & Hogan, N. (1995). Stability properties of human reaching movements. Experimental Brain Research, 107(1), 125–136.

    Article  Google Scholar 

  • Zico Kolter, J., & Ng, A. Y. (2009). Task-space trajectories via cubic spline optimization. In Proceedings of the 2009 IEEE international conference on robotics and automation, Kobe, Japan (pp. 2364–2371). New York: IEEE Press.

    Google Scholar 

  • Zucker, M., Bagnell, J. A. D., Atkeson, C., & Kuffner, J. (2010). An optimization approach to rough terrain locomotion. In IEEE conference on robotics and automation.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Degallier.

Additional information

This work was supported by the European Commission’s Cognition Unit, projects RobotCub and AMARSi. S.G. is funded by a IST-EPFL grant.

Electronic Supplementary Material

Below are the links to the electronic supplementary material.

(MPG 26.3 MB)

(MPG 2.39 MB)

(MPG 1.87 MB)

(MPG 3.30 MB)

(MPG 3.01 MB)

(AVI 2.43 MB)

(AVI 7.85 MB)

(AVI 9.05 MB)

(AVI 18.5 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Degallier, S., Righetti, L., Gay, S. et al. Toward simple control for complex, autonomous robotic applications: combining discrete and rhythmic motor primitives. Auton Robot 31, 155–181 (2011). https://doi.org/10.1007/s10514-011-9235-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-011-9235-2

Keywords

Navigation