Skip to main content

Autonomous motion planning of a hand-arm robotic system based on captured human-like hand postures

Abstract

The paper deals with the problem of motion planning of anthropomorphic mechanical hands avoiding collisions and trying to mimic real human hand postures. The approach uses the concept of “principal motion directions” to reduce the dimension of the search space in order to obtain results with a compromise between motion optimality and planning complexity (time). Basically, the work includes the following phases: capturing the human hand workspace using a sensorized glove and mapping it to the mechanical hand workspace, reducing the space dimension by looking for the most relevant principal motion directions, and planning the hand movements using a probabilistic roadmap planner. The approach has been implemented for a four finger anthropomorphic mechanical hand (17 joints with 13 independent degrees of freedom) assembled on an industrial robot (6 independent degrees of freedom), and experimental examples are included to illustrate its validity.

This is a preview of subscription content, access via your institution.

References

  1. Ali, M. S., Kyriakopoulos, K. J., & Stephanou, H. E. (1993). The kinematics of the Anthrobot-2 dextrous hand. In Proc. of the IEEE int. conf. on robotics and automation (Vol. 3, pp. 705–710).

    Google Scholar 

  2. Bekey, G. A., Tomovic, R., & Zeljkovic, I. (1990). Control architecture for the Belgrade/USC hand (pp. 136–149). New York: Springer.

    Google Scholar 

  3. Berenson, D., Diankov, R., Nishiwaki, K., Kagami, S., & Kuffner, J. (2007). Grasp planning in complex scenes. In Proc. of the IEEE-RAS international conference on humanoid robots.

    Google Scholar 

  4. Berenson, D., Srinivasa, S., Ferguson, D., & Kuffner, J. (2009). Manipulation planning on constraint manifolds. In Proc. of the IEEE int. conf. on robotics and automation (pp. 625–632).

    Google Scholar 

  5. Biagiotti, L., Lotti, F., Melchiorri, C., & Vassura, G. (2004). How far is the human hand? a review on anthropomorphic robotic end-effectors (Tech. rep.). University of Bologna.

  6. Bicchi, A. (2000). Hands for dexterous manipulation and robust grasping: a difficult road toward simplicity. IEEE Transactions on Robotics and Automation, 16(6), 652–662.

    Article  Google Scholar 

  7. Bluethmann, W., Ambrose, R., Diftler, M., Askew, S., Huber, E., Goza, M., Rehnmark, F., Lovchik, C., & Magruder, D. (2003). Robonaut: a robot designed to work with humans in space. Autonomous Robots, 14(2), 179–197.

    MATH  Article  Google Scholar 

  8. Boor, V., Overmars, M. H., & van der Stappen, A. F. (1999). The Gaussian sampling strategy for probabilistic roadmap planners. In Proc. of the IEEE int. conf. on robotics and automation (pp. 1018–1023).

    Google Scholar 

  9. Butterfass, J., Fischer, M., Grebenstein, M., Haidacher, S., & Hirzinger, G. (2004). Design and experiences with DLR hand II. In Proc. of the world automation congress (Vol. 15, pp. 105–110).

    Google Scholar 

  10. Caffaz, A., & Cannata, G. (1998). The design and development of the DIST-Hand dextrous gripper. In Proc. of the IEEE int. conf. on robotics and automation (Vol. 3, pp. 2075–2080).

    Google Scholar 

  11. Cheng, H. L., Hsu, D., Latombe, J. C., & Sanchez-Ante, G. (2006). Multi-level free space dilation for sampling narrow passages in prm planning. In Proc. of the IEEE int. conf. on robotics and automation (pp. 1255–1260).

    Google Scholar 

  12. Choset, H., Lynch, K. M., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L. E., & Thrun, S. (2005). Principles of robot motion. Cambridge: MIT Press.

    MATH  Google Scholar 

  13. Ciocarlie, M. T., & Allen, P. K. (2009). Hand posture subspaces for dexterous robotic grasping. The International Journal of Robotics Research, 28(7), 851–867.

    Article  Google Scholar 

  14. Cortés, J., & Siméon, T. (2004). Sampling-based motion planning under kinematic loop closure constraints. In Proc. of the 6th int. workshop on the algorithmic foundations of robotics (pp. 59–74).

    Google Scholar 

  15. Gabiccini, M., & Bicchi, A. (2010). On the role of hand synergies in the optimal choice of grasping forces. In Proc. of robotics: science and systems.

    Google Scholar 

  16. Gazeau, J. P., Zehloul, S., Arsicault, M., & Lallemand, J. P. (2001). The LMS hand: force and position controls in the aim of the fine manipulation of objects. In Proc. of the IEEE int. conf. on robotics and automation (Vol. 3, pp. 2642–2648).

    Google Scholar 

  17. Geraerts, R., & Overmars, M. H. (2006). Sampling and node adding in probabilistic roadmap planners. Robotics and Autonomous Systems, 54, 165–173.

    Article  Google Scholar 

  18. Gropp, W., Skjellum, A., Lusk, E. (1999). Using MPI: Portable parallel programming with the message-passing interface. Cambridge: MIT Press.

    Google Scholar 

  19. Halton, J. (1960). On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals. Numerische Mathematik, 2, 84–90.

    Article  MathSciNet  Google Scholar 

  20. Hsu, D., Jiang, T., Reif, J., & Sun, Z. (2003). The bridge test for sampling narrow passages with probabilistic roadmap planners. In Proc. of the IEEE int. conf. on robotics and automation (pp. 4420–4426).

    Google Scholar 

  21. Hsu, D., Sanchez-Ante, G., & Sun, Z. (2005). Hybrid PRM sampling with a cost-sensitive adaptive strategy. In Proc. of the IEEE int. conf. on robotics and automation (pp. 3874–3880).

    Chapter  Google Scholar 

  22. Hsu, D., Latombe, J. C., & Kurniawati, H. (2006). On the probabilistic foundations of probabilistic roadmap planning. The International Journal of Robotics Research, 25(7), 627–643.

    Article  Google Scholar 

  23. Jacobsen, S. C., Wood, J. E., Knutti, D. F., & Biggers, K. B. (1984). The UTAH/M.I.T. dextrous hand: work in progress. The International Journal of Robotics Research, 3(4), 21–50.

    Article  Google Scholar 

  24. Jolliffe, I. (2002). Springer series in statistics. Principal component analysis. Upper Saddle River: Springer.

    Google Scholar 

  25. Kavraki, LE, & Latombe, J. C. (1994). Randomized preprocessing of configuration for fast path planning. In Proc. of the IEEE int. conf. on robotics and automation (pp. 2138–2145).

    Google Scholar 

  26. Kavraki, L. E., Svestka, P., Latombe, J. C., & Overmars, M. K. (1996). Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Transactions on Robotics and Automation, 12(4), 566–580.

    Article  Google Scholar 

  27. Kawasaki, H., Komatsu, T., & Uchiyama, K. (2002). Dexterous anthropomorphic robot hand with distributed tactile sensor: Gifu hand II. IEEE/ASME Transactions on Mechatronics, 7(3), 296–303.

    Article  Google Scholar 

  28. Kuffner, J. J., & LaValle, S. M. (2000). RRT-connect: an efficient approach to single-query path planning. In Proc. of the IEEE int. conf. on robotics and automation (pp. 995–1001).

    Google Scholar 

  29. Kuffner, J. J., Kagami, S., Nishiwaki, K., Inaba, M., & Inoue, H. (2002). Dynamically-stable motion planning for humanoid robots. Autonomous Robots, 12(1), 285–300.

    Google Scholar 

  30. Kuipers, L., & Niederreiter, H. (2005). Uniform distribution of sequences. New York: Dover.

    Google Scholar 

  31. Kurniawati, H., & Hsu, D. (2006). Workspace-based connectivity oracle: an adaptive sampling strategy for PRM planning. In S. Akella et al. (Eds.), Algorithmic foundations of robotics VII. Berlin: Springer.

    Google Scholar 

  32. Lin, L. R., & Huang, H. P. (1996). Mechanism design of a new multifingered robot hand. In Proc. of the IEEE int. conf. on robotics and automation (Vol. 2, pp. 1471–1476).

    Google Scholar 

  33. Lotti, F., Tiezzi, P., Vassura, G., Biagiotti, L., Palli, G., & Melchiorri, C. (2005). Development of UB hand 3: early results. In Proc. of the IEEE int. conf. on robotics and automation (pp. 4488–4493).

    Chapter  Google Scholar 

  34. Lovchik, C. S., Diftler, M. A. (1999). The robonaut hand: a dexterous robot hand for space. In Proc. of the IEEE int. conf. on robotics and automation (Vol. 2, pp. 907–912).

    Google Scholar 

  35. Lozano-Perez, T. (1987). A simple motion-planning algorithm for general robot manipulators. IEEE Journal of Robotics and Automation, 3(3), 224–238.

    Article  Google Scholar 

  36. Murrieta-Cid, R., Tovar, B., & Hutchinson, S. (2005). A sampling-based motion planning approach to maintain visibility of unpredictable targets. Autonomous Robots, 19(3), 285–300.

    Article  Google Scholar 

  37. Peña, E., Yang, J., & Abdel-Malek, K. (2005). SantosTM hand: a 25-degree-of-freedom model. In Proc. of SAE digital human modeling for design and engineering, Iowa City, Iowa, USA.

    Google Scholar 

  38. Pérez, A., & Rosell, J. (2009). A roadmap to robot motion planning software development. Computer Applications in Engineering Education. doi:101002/cae20269.

    Google Scholar 

  39. Roa, M., & Suárez, R. (2009). Finding locally optimum force-closure grasps. Robotics and Computer-Integrated Manufacturing, 25(3), 536–544.

    Article  Google Scholar 

  40. Rodríguez, A., Pérez, A., Rosell, J., & Basañez, L. (2009). Sampling-based path planning for geometrically-constrained objects. In Proc. of the IEEE int. conf. on robotics and automation (pp. 2074–2079).

    Google Scholar 

  41. Rosales, C., Ros, L., Porta, J. M., & Suárez, R. (2011). Synthesizing grasp configurations with specified contact regions. The International Journal of Robotics Research, 30(4), 431–443.

    Google Scholar 

  42. Rosell, J., Sierra, X., Palomo, L., & Suárez, R. (2005). Finding grasping configurations of a dexterous hand and an industrial robot. In Proc. of the IEEE int. conf. on robotics and automation (pp. 1178–1183).

    Chapter  Google Scholar 

  43. Rosell, J., Roa, M., Pérez, A., & García, F. (2007). A general deterministic sequence for sampling d-dimensional configuration spaces. Journal of Intelligent and Robotic Systems, 50(4), 361–374.

    MATH  Article  Google Scholar 

  44. Rosell, J., Suárez, R., Rosales, C., García, J. A., & Pérez, A. (2009). Motion planning for high DOF anthropomorphic hands. In Proc. of the IEEE int. conf. on robotics and automation (pp. 4025–4030).

    Google Scholar 

  45. Safonova, A., Hodgins, J. K., & Pollard, N. S. (2004). Synthesizing physically realistic human motion in low-dimensional behavior-specific spaces. ACM Transactions on Graphics, 23(3), 514–521.

    Article  Google Scholar 

  46. Saha, M., Latombe, J. C., Chang, Y. C., & Prinz, F. (2005). Finding narrow passages with probabilistic roadmaps: the small-step retraction method. Autonomous Robots, 19(3), 301–319.

    Article  Google Scholar 

  47. Santello, M., Flanders, M., & Soechting, J. F. (1998). Postural hand synergies for tool use. Journal of Neuroscience, 18(23), 10,105–10,115.

    Google Scholar 

  48. Schunk GmbH & Co KG (2006). Schunk anthropomorphic hand. http://www.schunk.com/.

  49. Shadow Robot Company (2003). Design of a dextrous hand for advanced clawar applications. In Climbing and walking robots and the supporting technologies for mobile machines (pp. 691–698).

    Google Scholar 

  50. Stilman, M. (2010). Global manipulation planning in robot joint space with task constraints. IEEE Transactions on Robotics, 26(3), 576–584.

    Article  Google Scholar 

  51. Suárez, R., & Grosch, P. (2005). Mechanical hand MA-I as experimental system for grasping and manipulation. In VideoProc. of the IEEE int. conf. on robotics and automation, Barcelona.

    Google Scholar 

  52. Suárez, R., Rosell, J., Pérez, A., & Rosales, C. (2009). Efficient search of obstacle-free paths for anthropomorphic hands. In Proc. of the IEEE/RSJ int. conf. on intelligent robots and systems (pp. 1773–1778).

    Google Scholar 

  53. Tsoli, A., & Jenkins, O. C. (2007). 2D subspaces for user-driven robot grasping. In Proc. of the RSS 2007 workshop on robot manipulation: sensing and adapting to the real world.

    Google Scholar 

  54. van der Berg, J. P., & Overmars, M. H. (2005). Using workspace information as a guide to non-uniform sampling in probabilistic roadmap planners. The International Journal of Robotics Research, 24(12), 1055–1071.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jan Rosell.

Additional information

Work partially supported by the Spanish Government through the projects DPI2010-15446, DPI2008-02448 and PI09/90088.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(MPG 11.7 MB)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rosell, J., Suárez, R., Rosales, C. et al. Autonomous motion planning of a hand-arm robotic system based on captured human-like hand postures. Auton Robot 31, 87 (2011). https://doi.org/10.1007/s10514-011-9232-5

Download citation

Keywords

  • Motion planning
  • Grasping
  • Manipulation
  • Mechanical hands