Autonomous Robots

, 31:87 | Cite as

Autonomous motion planning of a hand-arm robotic system based on captured human-like hand postures

  • Jan Rosell
  • Raúl Suárez
  • Carlos Rosales
  • Alexander Pérez


The paper deals with the problem of motion planning of anthropomorphic mechanical hands avoiding collisions and trying to mimic real human hand postures. The approach uses the concept of “principal motion directions” to reduce the dimension of the search space in order to obtain results with a compromise between motion optimality and planning complexity (time). Basically, the work includes the following phases: capturing the human hand workspace using a sensorized glove and mapping it to the mechanical hand workspace, reducing the space dimension by looking for the most relevant principal motion directions, and planning the hand movements using a probabilistic roadmap planner. The approach has been implemented for a four finger anthropomorphic mechanical hand (17 joints with 13 independent degrees of freedom) assembled on an industrial robot (6 independent degrees of freedom), and experimental examples are included to illustrate its validity.


Motion planning Grasping Manipulation Mechanical hands 

Supplementary material

(MPG 11.7 MB)


  1. Ali, M. S., Kyriakopoulos, K. J., & Stephanou, H. E. (1993). The kinematics of the Anthrobot-2 dextrous hand. In Proc. of the IEEE int. conf. on robotics and automation (Vol. 3, pp. 705–710). Google Scholar
  2. Bekey, G. A., Tomovic, R., & Zeljkovic, I. (1990). Control architecture for the Belgrade/USC hand (pp. 136–149). New York: Springer. Google Scholar
  3. Berenson, D., Diankov, R., Nishiwaki, K., Kagami, S., & Kuffner, J. (2007). Grasp planning in complex scenes. In Proc. of the IEEE-RAS international conference on humanoid robots. Google Scholar
  4. Berenson, D., Srinivasa, S., Ferguson, D., & Kuffner, J. (2009). Manipulation planning on constraint manifolds. In Proc. of the IEEE int. conf. on robotics and automation (pp. 625–632). Google Scholar
  5. Biagiotti, L., Lotti, F., Melchiorri, C., & Vassura, G. (2004). How far is the human hand? a review on anthropomorphic robotic end-effectors (Tech. rep.). University of Bologna. Google Scholar
  6. Bicchi, A. (2000). Hands for dexterous manipulation and robust grasping: a difficult road toward simplicity. IEEE Transactions on Robotics and Automation, 16(6), 652–662. CrossRefGoogle Scholar
  7. Bluethmann, W., Ambrose, R., Diftler, M., Askew, S., Huber, E., Goza, M., Rehnmark, F., Lovchik, C., & Magruder, D. (2003). Robonaut: a robot designed to work with humans in space. Autonomous Robots, 14(2), 179–197. MATHCrossRefGoogle Scholar
  8. Boor, V., Overmars, M. H., & van der Stappen, A. F. (1999). The Gaussian sampling strategy for probabilistic roadmap planners. In Proc. of the IEEE int. conf. on robotics and automation (pp. 1018–1023). Google Scholar
  9. Butterfass, J., Fischer, M., Grebenstein, M., Haidacher, S., & Hirzinger, G. (2004). Design and experiences with DLR hand II. In Proc. of the world automation congress (Vol. 15, pp. 105–110). Google Scholar
  10. Caffaz, A., & Cannata, G. (1998). The design and development of the DIST-Hand dextrous gripper. In Proc. of the IEEE int. conf. on robotics and automation (Vol. 3, pp. 2075–2080). Google Scholar
  11. Cheng, H. L., Hsu, D., Latombe, J. C., & Sanchez-Ante, G. (2006). Multi-level free space dilation for sampling narrow passages in prm planning. In Proc. of the IEEE int. conf. on robotics and automation (pp. 1255–1260). Google Scholar
  12. Choset, H., Lynch, K. M., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L. E., & Thrun, S. (2005). Principles of robot motion. Cambridge: MIT Press. MATHGoogle Scholar
  13. Ciocarlie, M. T., & Allen, P. K. (2009). Hand posture subspaces for dexterous robotic grasping. The International Journal of Robotics Research, 28(7), 851–867. CrossRefGoogle Scholar
  14. Cortés, J., & Siméon, T. (2004). Sampling-based motion planning under kinematic loop closure constraints. In Proc. of the 6th int. workshop on the algorithmic foundations of robotics (pp. 59–74). Google Scholar
  15. Gabiccini, M., & Bicchi, A. (2010). On the role of hand synergies in the optimal choice of grasping forces. In Proc. of robotics: science and systems. Google Scholar
  16. Gazeau, J. P., Zehloul, S., Arsicault, M., & Lallemand, J. P. (2001). The LMS hand: force and position controls in the aim of the fine manipulation of objects. In Proc. of the IEEE int. conf. on robotics and automation (Vol. 3, pp. 2642–2648). Google Scholar
  17. Geraerts, R., & Overmars, M. H. (2006). Sampling and node adding in probabilistic roadmap planners. Robotics and Autonomous Systems, 54, 165–173. CrossRefGoogle Scholar
  18. Gropp, W., Skjellum, A., Lusk, E. (1999). Using MPI: Portable parallel programming with the message-passing interface. Cambridge: MIT Press. Google Scholar
  19. Halton, J. (1960). On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals. Numerische Mathematik, 2, 84–90. CrossRefMathSciNetGoogle Scholar
  20. Hsu, D., Jiang, T., Reif, J., & Sun, Z. (2003). The bridge test for sampling narrow passages with probabilistic roadmap planners. In Proc. of the IEEE int. conf. on robotics and automation (pp. 4420–4426). Google Scholar
  21. Hsu, D., Sanchez-Ante, G., & Sun, Z. (2005). Hybrid PRM sampling with a cost-sensitive adaptive strategy. In Proc. of the IEEE int. conf. on robotics and automation (pp. 3874–3880). CrossRefGoogle Scholar
  22. Hsu, D., Latombe, J. C., & Kurniawati, H. (2006). On the probabilistic foundations of probabilistic roadmap planning. The International Journal of Robotics Research, 25(7), 627–643. CrossRefGoogle Scholar
  23. Jacobsen, S. C., Wood, J. E., Knutti, D. F., & Biggers, K. B. (1984). The UTAH/M.I.T. dextrous hand: work in progress. The International Journal of Robotics Research, 3(4), 21–50. CrossRefGoogle Scholar
  24. Jolliffe, I. (2002). Springer series in statistics. Principal component analysis. Upper Saddle River: Springer. Google Scholar
  25. Kavraki, LE, & Latombe, J. C. (1994). Randomized preprocessing of configuration for fast path planning. In Proc. of the IEEE int. conf. on robotics and automation (pp. 2138–2145). Google Scholar
  26. Kavraki, L. E., Svestka, P., Latombe, J. C., & Overmars, M. K. (1996). Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Transactions on Robotics and Automation, 12(4), 566–580. CrossRefGoogle Scholar
  27. Kawasaki, H., Komatsu, T., & Uchiyama, K. (2002). Dexterous anthropomorphic robot hand with distributed tactile sensor: Gifu hand II. IEEE/ASME Transactions on Mechatronics, 7(3), 296–303. CrossRefGoogle Scholar
  28. Kuffner, J. J., & LaValle, S. M. (2000). RRT-connect: an efficient approach to single-query path planning. In Proc. of the IEEE int. conf. on robotics and automation (pp. 995–1001). Google Scholar
  29. Kuffner, J. J., Kagami, S., Nishiwaki, K., Inaba, M., & Inoue, H. (2002). Dynamically-stable motion planning for humanoid robots. Autonomous Robots, 12(1), 285–300. Google Scholar
  30. Kuipers, L., & Niederreiter, H. (2005). Uniform distribution of sequences. New York: Dover. Google Scholar
  31. Kurniawati, H., & Hsu, D. (2006). Workspace-based connectivity oracle: an adaptive sampling strategy for PRM planning. In S. Akella et al. (Eds.), Algorithmic foundations of robotics VII. Berlin: Springer. Google Scholar
  32. Lin, L. R., & Huang, H. P. (1996). Mechanism design of a new multifingered robot hand. In Proc. of the IEEE int. conf. on robotics and automation (Vol. 2, pp. 1471–1476). Google Scholar
  33. Lotti, F., Tiezzi, P., Vassura, G., Biagiotti, L., Palli, G., & Melchiorri, C. (2005). Development of UB hand 3: early results. In Proc. of the IEEE int. conf. on robotics and automation (pp. 4488–4493). CrossRefGoogle Scholar
  34. Lovchik, C. S., Diftler, M. A. (1999). The robonaut hand: a dexterous robot hand for space. In Proc. of the IEEE int. conf. on robotics and automation (Vol. 2, pp. 907–912). Google Scholar
  35. Lozano-Perez, T. (1987). A simple motion-planning algorithm for general robot manipulators. IEEE Journal of Robotics and Automation, 3(3), 224–238. CrossRefGoogle Scholar
  36. Murrieta-Cid, R., Tovar, B., & Hutchinson, S. (2005). A sampling-based motion planning approach to maintain visibility of unpredictable targets. Autonomous Robots, 19(3), 285–300. CrossRefGoogle Scholar
  37. Peña, E., Yang, J., & Abdel-Malek, K. (2005). SantosTM hand: a 25-degree-of-freedom model. In Proc. of SAE digital human modeling for design and engineering, Iowa City, Iowa, USA. Google Scholar
  38. Pérez, A., & Rosell, J. (2009). A roadmap to robot motion planning software development. Computer Applications in Engineering Education. doi:101002/cae20269. Google Scholar
  39. Roa, M., & Suárez, R. (2009). Finding locally optimum force-closure grasps. Robotics and Computer-Integrated Manufacturing, 25(3), 536–544. CrossRefGoogle Scholar
  40. Rodríguez, A., Pérez, A., Rosell, J., & Basañez, L. (2009). Sampling-based path planning for geometrically-constrained objects. In Proc. of the IEEE int. conf. on robotics and automation (pp. 2074–2079). Google Scholar
  41. Rosales, C., Ros, L., Porta, J. M., & Suárez, R. (2011). Synthesizing grasp configurations with specified contact regions. The International Journal of Robotics Research, 30(4), 431–443. Google Scholar
  42. Rosell, J., Sierra, X., Palomo, L., & Suárez, R. (2005). Finding grasping configurations of a dexterous hand and an industrial robot. In Proc. of the IEEE int. conf. on robotics and automation (pp. 1178–1183). CrossRefGoogle Scholar
  43. Rosell, J., Roa, M., Pérez, A., & García, F. (2007). A general deterministic sequence for sampling d-dimensional configuration spaces. Journal of Intelligent and Robotic Systems, 50(4), 361–374. MATHCrossRefGoogle Scholar
  44. Rosell, J., Suárez, R., Rosales, C., García, J. A., & Pérez, A. (2009). Motion planning for high DOF anthropomorphic hands. In Proc. of the IEEE int. conf. on robotics and automation (pp. 4025–4030). Google Scholar
  45. Safonova, A., Hodgins, J. K., & Pollard, N. S. (2004). Synthesizing physically realistic human motion in low-dimensional behavior-specific spaces. ACM Transactions on Graphics, 23(3), 514–521. CrossRefGoogle Scholar
  46. Saha, M., Latombe, J. C., Chang, Y. C., & Prinz, F. (2005). Finding narrow passages with probabilistic roadmaps: the small-step retraction method. Autonomous Robots, 19(3), 301–319. CrossRefGoogle Scholar
  47. Santello, M., Flanders, M., & Soechting, J. F. (1998). Postural hand synergies for tool use. Journal of Neuroscience, 18(23), 10,105–10,115. Google Scholar
  48. Schunk GmbH & Co KG (2006). Schunk anthropomorphic hand.
  49. Shadow Robot Company (2003). Design of a dextrous hand for advanced clawar applications. In Climbing and walking robots and the supporting technologies for mobile machines (pp. 691–698). Google Scholar
  50. Stilman, M. (2010). Global manipulation planning in robot joint space with task constraints. IEEE Transactions on Robotics, 26(3), 576–584. CrossRefGoogle Scholar
  51. Suárez, R., & Grosch, P. (2005). Mechanical hand MA-I as experimental system for grasping and manipulation. In VideoProc. of the IEEE int. conf. on robotics and automation, Barcelona. Google Scholar
  52. Suárez, R., Rosell, J., Pérez, A., & Rosales, C. (2009). Efficient search of obstacle-free paths for anthropomorphic hands. In Proc. of the IEEE/RSJ int. conf. on intelligent robots and systems (pp. 1773–1778). Google Scholar
  53. Tsoli, A., & Jenkins, O. C. (2007). 2D subspaces for user-driven robot grasping. In Proc. of the RSS 2007 workshop on robot manipulation: sensing and adapting to the real world. Google Scholar
  54. van der Berg, J. P., & Overmars, M. H. (2005). Using workspace information as a guide to non-uniform sampling in probabilistic roadmap planners. The International Journal of Robotics Research, 24(12), 1055–1071. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Jan Rosell
    • 1
  • Raúl Suárez
    • 1
  • Carlos Rosales
    • 1
    • 2
  • Alexander Pérez
    • 1
    • 3
  1. 1.Institute of Industrial and Control EngineeringTechnical University of CataloniaBarcelonaSpain
  2. 2.Institut de Robòtica i Informàtica Industrial (IRI)CSIC-UPCBarcelonaSpain
  3. 3.Escuela Colombiana de Ingeniería “Julio Garavito”Bogotá D.C.Colombia

Personalised recommendations