Autonomous Robots

, Volume 31, Issue 1, pp 1–20 | Cite as

Data-driven grasping

Article

Abstract

This paper propose a novel framework for a data driven grasp planner that indexes partial sensor data into a database of 3D models with known grasps and transfers grasps from those models to novel objects. We show how to construct such a database and also demonstrate multiple methods for matching into it, aligning the matched models with the known sensor data of the object to be grasped, and selecting an appropriate grasp to use. Our approach is experimentally validated in both simulated trials and trials with robots.

Keywords

Grasping Robotics Data-driven 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

(MP4 35636 KB)

References

  1. Aleotti, J., & Caselli, S. (2007). Robot grasp synthesis from virtual demonstration and topology-preserving environment reconstruction. In IEEE international conference on intelligent robots and systems. Google Scholar
  2. Aydin, Y., & Nakajima, M. (1999). Database guided computer animation of human grasping using forward and inverse kinematics. Computers & Graphics, 23(1). Google Scholar
  3. Balasubramanian, R., Xu, L., Brook, P. D., Smith, J. R., & Matsuoka, Y. (2010). Human-guided grasp measures improve grasp robustness on physical robot. In IEEE international conference on robotics and automation. Google Scholar
  4. Belongie, S., & Malik, J. (2000). Matching with shape contexts. In Workshop on content-based access of image and video libraries. Google Scholar
  5. Biederman, I. (1995). Visual object recognition. In S. F. Kosslyn & D. N. Osherson (Eds.), An invitation to cognitive science: Vol. 2 (2nd ed.). Chap. 4. Google Scholar
  6. Bohg, J., & Kragic, D. (2010). Learning grasping points with shape context. Robotics and Autonomous Systems, 58(4). Google Scholar
  7. Bowers, D. L., & Lumia, R. (2003). Manipulation of unmodeled objects using intelligent grasping schemes. IEEE Transactions on Fuzzy Systems, 11(3). Google Scholar
  8. Chen, D.-Y., Ouhyoung, M., Tian, X. P., & Shen, Y. T. (2003). On visual similarity based 3d model retrieval. In Eurographics. Google Scholar
  9. Ciocarlie, M., & Allen, P. K. (2009). Hand posture subspaces for dexterous robotic grasping. The International Journal of Robotics Research, 28, 851–867. CrossRefGoogle Scholar
  10. Ciocarlie, M., Goldfeder, C., & Allen, P. K. (2007a). Dimensionality reduction for hand-independent dexterous robotic grasping. In IEEE international conference on intelligent robots and systems. Google Scholar
  11. Ciocarlie, M., Lackner, C., & Allen, P. K. (2007b). Soft finger model with adaptive contact geometry for grasping and manipulation tasks. In IEEE world haptics. Google Scholar
  12. Dueck, G., & Scheuer, T. (1990). Threshold accepting: a general purpose optimization algorithm appearing superior to simulated annealing. Journal of Computational Physics, 90(1). Google Scholar
  13. Ferrari, C., & Canny, J. (2002). Planning optimal grasps. In IEEE international conference on robotics and automation. Google Scholar
  14. Gelfand, N., Mitra, N. J., Guibas, L. J., & Pottmann, H. (2005). Robust global registration. In Symposium on geometry processing. Google Scholar
  15. Glover, J., Rus, D., & Roy, N. (2008). Probabilistic models of object geometry for grasp planning. In Robotics: science and systems. Google Scholar
  16. Goldfeder, C., & Allen, P. K. (2008). Autotagging to improve text search for 3d models. In Joint conference on digital libraries. Google Scholar
  17. Goldfeder, C., Ciocarlie, M., Dang, H., & Allen, P. K. (2009a). The Columbia grasp database. In IEEE international conference on robotics and automation. Google Scholar
  18. Goldfeder, C., Ciocarlie, M., Peretzman, J., Dang, H., & Allen, P. K. (2009b). Data-driven grasping with partial sensor data. In IEEE international conference on intelligent robots and systems. Google Scholar
  19. Huber, D. F., & Hebert, M. (2003). Fully automatic registration of multiple 3d data sets. Image and Vision Computing, 21(7). Google Scholar
  20. Jaccard, P. (1901). Étude comparative de la distribution florale dans une portion des alpes et des jura. Bulletin del la Société Vaudoise des Sciences Naturelles, 37. Google Scholar
  21. Johnson, A. E., & Hebert, M. (1997). Surface registration by matching oriented points. In 3-D digital imaging and modeling. Google Scholar
  22. Kullback, S., & Leibler, R. A. (1951). On information and sufficiency. Annals of Mathematical Statistics, 22. Google Scholar
  23. Landy, M. S., & Graham, N. (2004). Visual perception of texture. In L. M. Chalupa & J. S. Werner (Eds.), The visual neurosciences. Chap. 2. Google Scholar
  24. Leung, T., & Malik, J. (2001). Representing and recognizing the visual appearance of materials using three-dimensional textons. International Journal of Computer Vision, 43(1). Google Scholar
  25. Li, Y., & Pollard, N. S. (2005). A shape matching algorithm for synthesizing humanlike enveloping grasps. In Humanoid robots. Google Scholar
  26. Liu, T., Moore, A., Gray, A., & Yang, K. (2004). An investigation of practical approximate nearest neighbor algorithms. In Conference on neural information processing systems. Google Scholar
  27. Lowe, D. G. (1999). Object recognition from local scale-invariant features. In IEEE international conference on computer vision. Google Scholar
  28. Makadia, A., Patterson, A., & Daniilidis, K. (2006). Fully automatic registration of 3D point clouds. In IEEE conference on computer vision and pattern recognition. Google Scholar
  29. Miller, A., & Allen, P. K. (2004). Graspit!: a versatile simulator for robotic grasping. IEEE Robotics and Automation Magazine, 11(4). Google Scholar
  30. Morales, A., Asfour, T., Azad, P., Knoop, S., & Dillmann, R. (2006). Integrated grasp planning and visual object localization for a humanoid robot with five-fingered hands. In IEEE international conference on intelligent robots and systems. Google Scholar
  31. Novotni, M., & Klein, R. (2003). 3D Zernike descriptors for content based shape retrieval. In ACM symposium on solid modeling and applications. Google Scholar
  32. Nowak, E., Jurie, F., & Triggs, B. (2006). Sampling strategies for bag-of-features image classification. In European conference on computer vision. Google Scholar
  33. Ohbuchi, R., Osada, K., Furuya, T., & Banno, T. (2008). Salient local visual featuers for shape-based 3D model retrieval. In IEEE international conference on shape modeling and applications. Google Scholar
  34. Papadakis, P., Pratikakis, I., Theoharis, T., & Perantonis, S. (2010). PANORAMA: a 3D shape descriptor based on panoramic views for unsupervised 3d object retrieval. International Journal of Computer Vision, Special Issue on: 3D Object Retrieval, 89(2). Google Scholar
  35. Pelossof, R., Miller, A., Allen, P. K., & Jebara, T. (2004). An svm learning approach to robotic grasping. In IEEE international conference on robotics and automation. Google Scholar
  36. Platt, R., Fagg, A. H., & Grupen, R. (2002). Nullspace composition of control laws for grasping. In IEEE international conference on robotics and automation. Google Scholar
  37. Romea, A. C., & Srinivasa, S. (2010). Efficient multi-view object recognition and full pose estimation. In IEEE international conference on robotics and automation. Google Scholar
  38. Rother, C., Kolmogorov, V., & Blake, A. (2004). Grabcut: Interactive foreground extraction using iterated graph cuts. ACM Transactions on Graphics, 23. Google Scholar
  39. Rusinkiewicz, S., & Levoy, M. (2001). Efficient variants of the icp algorithm. In IEEE international conference on 3-D digital imaging and modeling. Google Scholar
  40. Salvi, J., Matabosch, C., Fofi, D., & Forest, J. (2007). A review of recent range image registration methods with accuracy evaluation. Image and Vision Computing, 25(5). Google Scholar
  41. Saxena, A., Driemeyer, J., & Ng, A. Y. (2008). Robotic grasping of novel objects using vision. International Journal of Robotics Research. Google Scholar
  42. Shilane, P., Min, P., Kazhdan, M., & Funkhouser, T. (2004). The Princeton shape benchmark. In IEEE international conference on shape modeling and applications. Google Scholar
  43. Sivamani, R. K., Goodman, J., Gitis, N. V., & Maibach, H. I. (2003). Coefficient of friction: tribological studies in man—an overview. Skin Research and Technology, 9(3). Google Scholar
  44. Srinivasa, S., Ferguson, D., Helfrich, C., Berenson, D., Romea, A. C., Diankov, R., Gallagher, G., Hollinger, G., Kuffner, J., & Vandeweghe, J. M. (2010). HERB: a home exploring robotic butler. Autonomous Robots, 28(1). Google Scholar
  45. Torres, M. M., Romea, A. C., & Srinivasa, S. (2010). Moped: a scalable and low latency object recognition and pose estimation system. In IEEE international conference on robotics and automation. Google Scholar
  46. Triggs, B., Mclauchlan, P. F., Hartley, R. I., & Fitzgibbon, A. W. (2000). Lecture notes in computer science: Vol. 1883. Bundle adjustment—a modern synthesis. Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Columbia UniversityNew YorkUSA

Personalised recommendations