Skip to main content
Log in

Control of underactuated planar pronking through an embedded spring-mass Hopper template

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

Autonomous use of legged robots in unstructured, outdoor settings requires dynamically dexterous behaviors to achieve sufficient speed and agility without overly complex and fragile mechanics and actuation. Among such behaviors is the relatively under-studied pronking (aka. stotting), a dynamic gait in which all legs are used in synchrony, usually resulting in relatively slow speeds but long flight phases and large jumping heights. Instantiations of this gait for robotic systems have been mostly limited to open-loop strategies, suffering from severe pitch instability for underactuated designs due to the lack of active feedback. However, both the kinematic simplicity of this gait and its dynamic nature suggest that the Spring-Loaded Inverted Pendulum model (SLIP) would be a good basis for the implementation of a more robust feedback controller for pronking. In this paper, we describe how template-based control, a controller structure based on the embedding of a simple dynamical “template” within a more complex “anchor” system, can be used to achieve very stable pronking for a planar, underactuated hexapod robot. In this context, high-level control of the gait is regulated through speed and height commands to the SLIP template, while the embedding controller ensures the stability of the remaining degrees of freedom. We use simulation studies to show that unlike existing open-loop alternatives, the resulting control structure provides explicit gait control authority and significant robustness against sensor and actuator noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, T., Quinn, R., Bachmann, R., & Ritzmann, R. (2003). Abstracted biological principles applied with reduced actuation improve mobility of legged vehicles. In Proceedings. 2003 IEEE/RSJ international conference on intelligent robots and systems, IROS 2003, (vol. 2, pp. 1370–1375).

    Google Scholar 

  • Altendorfer, R. E. (2000). Evidence for spring loaded inverted pendulum running in a hexapod robot. In D. Rus & S. Singh (Eds.), Lecture Notes in Control and Information Sciences: Vol. 5. Experimental Robotics VII (pp. 291–302). Berlin: Springer.

    Google Scholar 

  • Altendorfer, R., Koditschek, D. E., & Holmes, P. (2004). Stability analysis of legged locomotion models by symmetry-factored return maps. The International Journal of Robotics Research, 23(10–11), 979–999.

    Article  Google Scholar 

  • Ankarali, M. M., Arslan, O., & Saranli, U. (2009). An analytical solution to the stance dynamics of passive spring-loaded inverted pendulum with damping. In 12th international conference on climbing and walking robots and the support technologies for mobile machines (CLAWAR’09), Istanbul, Turkey.

    Google Scholar 

  • Arslan, O., Saranli, U., & Morgul, O. (2009). An approximate stance map of the spring mass hopper with gravity correction for nonsymmetric locomotions. In Proceedings of the international conference on robotics and automation, Kobe, Japan.

    Google Scholar 

  • Berkemeier, M., & Sukthankar, P. (2005). Self-organizing running in a quadruped robot model. In Proceedings of the international conference on robotics and automation (pp. 4108–4113).

    Chapter  Google Scholar 

  • Blickhan, R., & Full, R. J. (1993). Similarity in multilegged locomotion: bouncing like a monopode. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 173(5), 509–517.

    Article  Google Scholar 

  • Caro, T. M. (1994). Ungulate antipredator behaviour: preliminary and comparative data from African bovids. Behavior, 128(3–4), 189–228.

    Article  Google Scholar 

  • Carver, S. Control of a spring-mass Hopper. Ph.D., Cornell University, January 2003.

  • Chatzakos, P., & Papadopoulos, E. (2007). Parametric analysis and design guidelines for a quadruped bounding robot. In Proceedings of the med. conference on control and automation (pp. 1–6).

    Chapter  Google Scholar 

  • Chatzakos, P., & Papadopoulos, E. (2009). Bio-inspired design of electrically-driven bounding quadrupeds via parametric analysis. Mechanism and Machine Theory, 44(3), 559–579. Special Issue on Bio-Inspired Mechanism Engineering.

    Article  MATH  Google Scholar 

  • Chatzkos, P., & Papadopoulos, E. (2009). A parametric study on the rolling motion of dynamically running quadrupeds during pronking. In Proceedings of the med. conference on control and automation, Thessaloniki, Greece, June 2009 (pp. 754–759).

    Chapter  Google Scholar 

  • Chevallereau, C., Grizzle, J. W., & Shih, C.-L. (2009). Asymptotically stable walking of a five-link underactuated 3d bipedal robot. IEEE Transactions on Robotics, 25(1), 37–50.

    Article  Google Scholar 

  • Duysens, J., & de Crommert, H. W. A. A. V. (1998). Neural control of locomotion; part 1: the central pattern generator from cats to humans. Gait & Posture, 7(2), 131–141.

    Article  Google Scholar 

  • FitzGibbon, C. D., & Fanshawe, J. H. (1988). Stotting in Thomson’s gazelles: an honest signal of condition. Behavioral Ecology and Sociobiology, 23(2), 69–74.

    Article  Google Scholar 

  • Full, R. J., & Koditschek, D. E. (1999). Templates and anchors: neuromechanical hypotheses of legged locomotion. Journal of Experimental Biology, 202, 3325–3332.

    Google Scholar 

  • Geyer, H., Seyfarth, A., & Blickhan, R. (2005). Spring-mass running: simple approximate solution and application to gait stability. Journal of Theoretical Biology, 232(3), 315–328.

    MathSciNet  Google Scholar 

  • Greenfield, A., Saranli, U., & Rizzi, A. A. (2005). Solving models of controlled dynamic planar rigid-body systems with frictional contact. The International Journal of Robotics Research, 24(11), 911–931.

    Article  Google Scholar 

  • Gregorio, P., Ahmadi, M., & Buehler, M. (1997). Design, control, and energetics of an electrically actuated legged robot. Transactions on Systems, Man, and Cybernetics, 27(4), 626–634.

    Article  Google Scholar 

  • Klavins, E., Komsuoglu, H., Full, R. J., & Koditschek, D. E. (2002). The role of reflexes versus central pattern generators in dynamical legged locomotion. In Neurotechnology for biomimetic robots (pp. 351–382). Boston: MIT Press.

    Google Scholar 

  • Kopell, N. (2000). We got rhythm: dynamical systems of the nervous system. American Mathematical Society, 47(1), 6–16.

    MATH  MathSciNet  Google Scholar 

  • Kuo, A. D. (2002). The relative roles of feedforward and feedback in the control of rhythmic movements. Motor Control, 6(2), 129–145.

    Google Scholar 

  • Lin, P.-C. (2005). Proprioceptive sensing for a legged robot. Ph.D., The University of Michigan, Ann Arbor, MI.

  • McMordie, D. (2002). Towards pronking with a hexapod robot. Master’s thesis, McGill University.

  • McMordie, D., & Buehler, M. (2001). Towards pronking with a hexapod robot. In 4th international conference on climbing and walking robots, Karlsruhe, Germany.

    Google Scholar 

  • Poulakakis, I., Smith, J. A., & Buehler, M. (2005). Modeling and experiments of untethered quadrupedal running with a bounding gait: the scout II robot. The International Journal of Robotics Research, 24(4), 239–256.

    Article  Google Scholar 

  • Raibert, M. (1986). MIT Press series in artificial intelligence. Legged robots that balance. Boston: MIT Press.

    Google Scholar 

  • Raibert, M. H. (1990). Trotting, pacing and bounding by a quadruped robot. Journal of Biomechanics, 23(1), 79–98.

    Article  Google Scholar 

  • Saranli, U. (2000). SimSect hybrid dynamical simulation environment. (Technical report CSE-TR-436-00). UM, Ann Arbor, MI.

  • Saranli, U. (2002). Dynamic locomotion with a hexapod robot. Ph.D. thesis, The University of Michigan, Ann Arbor, MI.

  • Saranli, U., Buehler, M., & Koditschek, D. E. (2001). RHex: a simple and highly mobile robot. The International Journal of Robotics Research, 20(7), 616–631.

    Article  Google Scholar 

  • Saranli, U., & Koditschek, D. E. (2003). Template based control of hexapedal running. In Proceedings of the IEEE international conference on robotics and automation, Taipei, Taiwan (vol. 1, pp. 1374–1379).

    Google Scholar 

  • Saranli, U., Rizzi, A. A., & Koditschek, D. E. (2004). Model-based dynamic self-righting maneuvers for a hexapedal robot. The International Journal of Robotics Research, 23(9), 903–918.

    Article  Google Scholar 

  • Saranli, U., Schwind, W. J., & Koditschek, D. E. (1998). Toward the control of a multi-jointed, monoped runner. In Proceedings of the IEEE international conference on robotics and automation, New York (vol. 3, pp. 2676–2682).

    Google Scholar 

  • Sato, A., & Buehler, M. (2004). A planar hopping robot with one actuator: design, simulation, and experimental results. In Proceedings of the international conference on intelligent robots and systems (vol. 4, pp. 3540–3545).

    Google Scholar 

  • Schwind, W. J. (1998). Spring loaded inverted pendulum running: a plant model. Ph.D., University of Michigan.

  • Westervelt, E. R., Grizzle, J. W., Chevallerau, C., Choi, J.-H., & Morris, B. (2007). Feedback control of dynamic bipedal robot locomotion. London: Taylor and Francis.

    Book  Google Scholar 

  • Zeglin, G. (1999). The bow leg hopping robot. Doctoral thesis in robotics, Carnegie Mellon University.

  • Zou, H., & Schmiedeler, J. (2006). The effect of asymmetrical body-mass distribution on the stability and dynamics of quadruped bounding. IEEE Transactions on Robotics, 22(4), 711–723.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uluc̣ Saranlı.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ankaralı, M.M., Saranlı, U. Control of underactuated planar pronking through an embedded spring-mass Hopper template. Auton Robot 30, 217–231 (2011). https://doi.org/10.1007/s10514-010-9216-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-010-9216-x

Keywords

Navigation