Skip to main content
Log in

Exploiting social partners in robot learning

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

Social learning in robotics has largely focused on imitation learning. Here we take a broader view and are interested in the multifaceted ways that a social partner can influence the learning process. We implement four social learning mechanisms on a robot: stimulus enhancement, emulation, mimicking, and imitation, and illustrate the computational benefits of each. In particular, we illustrate that some strategies are about directing the attention of the learner to objects and others are about actions. Taken together these strategies form a rich repertoire allowing social learners to use a social partner to greatly impact their learning process. We demonstrate these results in simulation and with physical robot ‘playmates’.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alissandrakis, A., Nehaniv, C., & Dautenhahn, K. (2006). Action, state and effect metrics for robot imitation. In Proceedings of the 15th IEEE international symposium on robot and human interactive communication (pp. 232–237).

  • Atkeson, C. G., & Schaal, S. (1997). Robot learning from demonstration. In Proc. 14th international conference on machine learning (pp. 12–20). San Mateo: Morgan Kaufmann.

    Google Scholar 

  • Blumberg, B., Downie, M., Ivanov, Y., Berlin, M., Johnson, M., & Tomlinson, B. (2002). Integrated learning for interactive synthetic characters. In Proc. of the ACM SIGGRAPH (pp. 417–426).

  • Breazeal, C., & Scassellati, B. (2002). Robots that imitate humans. Trends in Cognitive Science, 6(11), 481–487.

    Article  Google Scholar 

  • Breazeal, C., Brooks, A., Gray, J., Hoffman, G., Lieberman, J., Lee, H., Thomaz, A. L., & Mulanda, D. (2004). Tutelage and collaboration for humanoid robots. International Journal of Humanoid Robotics, 1(2), 315–348.

    Article  Google Scholar 

  • Cakmak, M., DePalma, N., Arriaga, R., & Thomaz, A. (2009). Computational benefits of social learning mechanisms: Stimulus enhancement and emulation. In IEEE int. conference on development and learning (pp. 1–7).

  • Calinon, S., & Billard, A. (2007). What is the teacher’s role in robot programming by demonstration?—Toward benchmarks for improved learning. Interaction Studies. Special Issue on Psychological Benchmarks in Human-Robot Interaction, 8(3), 441–464.

    Google Scholar 

  • Call, J., & Carpenter, M. (2002). Three sources of information in social learning. In K. Dautenhahn & C. Nehaniv (Eds.), Imitation in animals and artifacts (pp. 211–228). Cambridge: MIT Press.

    Google Scholar 

  • Chang, C.-C., & Lin, C.-J. (2001). LIBSVM: a library for support vector machines.

  • Chernova, S., & Veloso, M. (2007). Confidence-based policy learning from demonstration using Gaussian mixture models. In Proc. of autonomous agents and multi-agent systems (AAMAS). Article No.: 233.

  • Demiris, J., & Hayes, G. (2002). Imitation as a dual-route process featuring predictive and learning components: a biologically plausible computational model. In K. Dautenhahn & C. L. Nehaniv (Eds.), Imitation in animals and artifacts (pp. 327–361). Cambridge: MIT Press.

    Google Scholar 

  • Greenfield, P. M. (1984). Theory of the teacher in learning activities of everyday life. In B. Rogoff & J. Lave (Eds.), Everyday cognition: its development in social context (pp. 117–138). Cambridge: Harvard University Press.

    Google Scholar 

  • Grollman, D. H., & Jenkins, O. C. (2008). Sparse incremental learning for interactive robot control policy estimation. In IEEE international conference on robotics and automation (pp. 3315–3320).

  • Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. (2009). The weak data mining software: an update. SIGKDD Explorations, 11(1).

  • Huang, Y., & Du, S. (2005). Weighted support vector machines for classification with uneven training class sizes. In Proceedings of the fourth international conference on machine learning and cybernetics (pp. 4365–4369).

  • Isbell, C., Shelton, C., Kearns, M., Singh, S., & Stone, P. (2001). Cobot: a social reinforcement learning agent. In 5th int. conf. on autonomous agents (pp. 377–384).

  • Jenkins, O. C., & Mataric’, M. (2002). Deriving action and behavior primitives from human motion data. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS 2002) (pp. 2551–2556).

  • Kaplan, F., Oudeyer, P.-Y., Kubinyi, E., & Miklosi, A. (2002). Robotic clicker training. Robotics and Autonomous Systems, 38(3–4), 197–206.

    Article  Google Scholar 

  • Kuniyoshi, Y., Inaba, M., & Inoue, H. (1994). Learning by watching: extracting reusable task knowledge from visual observation of human performance. IEEE Transactions on Robotics and Automation, 10, 799–822.

    Article  Google Scholar 

  • Vygotsky, L. S. (1978). Mind in society: the development of higher psychological processes. Cambridge: Harvard University Press.

    Google Scholar 

  • Langley, P., Iba, W., & Thompson, K. (1992). An analysis of Bayesian classifier. In Proceedings of the tenth national conference on artificial intelligence (pp. 223–228).

  • Lave, J., & Wenger, E. (1991). Situated learning: legitimate peripheral participation. Cambridge: Cambridge University Press.

    Google Scholar 

  • Lopes, M., Melo, F., Kenward, B., & Santos-Victor, J. (2009). A computational model of social-learning mechanisms. Adaptive Behavior, 17(6) 467–483.

    Article  Google Scholar 

  • Melo, F., Lopes, M., Santos-Victor, J., & Ribeiro, M. (2007). A unified framework for imitation-like behaviors. In 4th international symposium in imitation in animals and artifacts (pp. 241–250).

  • Nicolescu, M. N., & Matarić, M. J. (2003). Natural methods for robot task learning: instructive demonstrations, generalization and practice. In Proc. of the 2nd int. conf. AAMAS (pp. 241–248).

  • Pea (1993). Practices of distributed intelligence and designs for education. In G. Salomon (Ed.), Distributed cognitions: psychological and educational considerations (pp. 47–87). New York: Cambridge University Press.

    Google Scholar 

  • Peters, R. A., & Campbell, C. L. (2003). Robonaut task learning through teleoperation. In Proceedings of the IEEE international conference on robotics and automation (pp. 2806–2811). Taipei, Taiwan.

  • Quinlan, R. (1993). C4.5: Programs for machine learning. San Mateo: Morgan Kaufmann.

    Google Scholar 

  • Rogoff, B., & Gardner, H. (1984). Adult guidance of cognitive development. In B. Rogoff & J. Lave (Eds.), Everyday cognition: its development in social context (pp. 95–116). Cambridge: Harvard University Press.

    Google Scholar 

  • Sahin, E., Cakmak, M., Dogar, M., Ugur, E., & Ucoluk, G. (2007). To afford or not to afford: a new formalization of affordances toward affordance-based robot control. Adaptive Behavior, 15(4), 447–472.

    Article  Google Scholar 

  • Saksida, L. M., Raymond, S. M., & Touretzky, D. S. (1998). Shaping robot behavior using principles from instrumental conditioning. Robotics and Autonomous Systems, 22(3/4), 231.

    Google Scholar 

  • Schaal, S. (1999). Is imitation learning the route to humanoid robots? Trends in Cognitive Sciences, 3, 233–242.

    Article  Google Scholar 

  • Smart, W. D., & Kaelbling, L. P. (2002). Effective reinforcement learning for mobile robots. In Proc. of the IEEE international conference on robotics and automation (pp. 3404–3410).

  • Stern, A., Frank, A., & Resner, B. (1998). Virtual petz (video session): a hybrid approach to creating autonomous, lifelike dogz and catz. In AGENTS ’98: Proceedings of the second international conference on Autonomous agents (pp. 334–335). New York: ACM Press.

    Chapter  Google Scholar 

  • Thomaz, A. L., & Breazeal, C. (2008). Teachable robots: understanding human teaching behavior to build more effective robot learners. Artificial Intelligence Journal, 172, 716–737.

    Article  Google Scholar 

  • Thomaz, A. L., & Cakmak, M. (2009). Learning about objects with human teachers. In Proc. of the international conference on human-robot interaction (HRI) (pp. 15–22).

  • Tomasello, M. (2001). The cultural origins of human cognition. Cambridge: Harvard University Press.

    Google Scholar 

  • Vapnik, V. (1998). Statistical learning theory. New York: Wiley.

    MATH  Google Scholar 

  • Voyles, R., & Khosla, P. (2001). A multi-agent system for programming robotic agents by human demonstration. Integrated Computer-Aided Engineering, 8(1), 59–67.

    Google Scholar 

  • Wertsch, J. V., Minick, N., & Arns, F. J. (1984). Creation of context in joint problem solving. In B. Rogoff & J. Lave (Eds.), Everyday cognition: its development in social context (pp. 151–171). Cambridge: Harvard University Press.

    Google Scholar 

  • Zukow-Goldring, P., & Arbib, M. A. (2007). Affordances, effectivities, and assisted imitation: Caregivers and the directing of attention. Neurocomputing, 70913–15), 2181–2193.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea L. Thomaz.

Additional information

This work is supported by the National Science Foundation, award number IIS-0812106.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cakmak, M., DePalma, N., Arriaga, R.I. et al. Exploiting social partners in robot learning. Auton Robot 29, 309–329 (2010). https://doi.org/10.1007/s10514-010-9197-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-010-9197-9

Keywords

Navigation