Skip to main content
Log in

From human to humanoid locomotion—an inverse optimal control approach

  • Published:
Autonomous Robots Aims and scope Submit manuscript


The purpose of this paper is to present inverse optimal control as a promising approach to transfer biological motions to robots. Inverse optimal control helps (a) to understand and identify the underlying optimality criteria of biological motions based on measurements, and (b) to establish optimal control models that can be used to control robot motion. The aim of inverse optimal control problems is to determine—for a given dynamic process and an observed solution—the optimization criterion that has produced the solution. Inverse optimal control problems are difficult from a mathematical point of view, since they require to solve a parameter identification problem inside an optimal control problem. We propose a pragmatic new bilevel approach to solve inverse optimal control problems which rests on two pillars: an efficient direct multiple shooting technique to handle optimal control problems, and a state-of-the art derivative free trust region optimization technique to guarantee a match between optimal control problem solution and measurements. In this paper, we apply inverse optimal control to establish a model of human overall locomotion path generation to given target positions and orientations, based on newly collected motion capture data. It is shown how the optimal control model can be implemented on the humanoid robot HRP-2 and thus enable it to autonomously generate natural locomotion paths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  • Alexander, R. M. (1984). The gaits of bipedal and quadrupedal animals. International Journal of Robotics Research, 3(2), 49–59.

    Article  Google Scholar 

  • Alexander, R. M. (1996). Optima for animals. Princeton: Princeton University Press.

    Google Scholar 

  • Arechavaleta, G., Laumond, J. P., Hicheur, H., & Berthoz, A. (2008a). On the nonholonomic nature of human locomotion. Autonomous Robots, 25(1–2).

  • Arechavaleta, G., Laumond, J. P., Hicheur, H., & Berthoz, A. (2008b). An optimality principle governing human walking. IEEE Transactions on Robotics, 24(1), 5–14.

    Article  Google Scholar 

  • Billard, A., & Mataric, M. (2001). Learning human arm movements by imitation: evaluation of a biologically inspired connectionist architecture. Robotics and Autonomous Systems, 27(2–3), 145–160.

    Article  Google Scholar 

  • Bock, H. G. (1987). Bonner Mathematische Schriften: Vol. 183. Randwertproblemmethoden zur Parameteridentifizierung in Systemen nichtlinearer Differentialgleichungen. Bonn: Universität Bonn.

    MATH  Google Scholar 

  • Bock, H. G., & Plitt, K. J. (1984). A multiple shooting algorithm for direct solution of optimal control problems. In Proceedings of the 9th IFAC World congress, Budapest (pp. 242–247). International Federation of Automatic Control.

  • Boulic, R. (2008). Relaxed steering towards oriented region goals. In LNCS. Motions in games (pp. 176–187). Berlin: Springer.

    Chapter  Google Scholar 

  • Brogan, D., & Johnson, N. (2003). Realistic human walking paths. In Proceedings of international conference on computer animation and social agents, New-Brunswick, NJ, USA (pp. 94–101).

  • Chestnutt, J., Lau, M., Cheung, G., Kuffner, J., Hodgins, J., & Kanade, T. (2005). Footstep planning for the Honda ASIMO humanoid. In Proceedings of the IEEE international conference on robotics and automation (ICRA), Barcelona (pp. 629–634).

  • Choi, M. G., Lee, J., & Shin, S. Y. (2003). Planning biped locomotion using motion capture data and probabilistic roadmaps. ACM Transactions on Graphics, 22(2), 182–203.

    Article  Google Scholar 

  • Collins, S. H., Ruina, A. L., Tedrake, R., & Wisse, M. (2005). Efficient bipedal robots based on passive-dynamic walkers. Science, 307, 1082–1085.

    Article  Google Scholar 

  • Flash, T., & Hogan, N. (1984). The coordination of arm movements: an experimentally confirmed mathematical model. Journal of Neuroscience, 5, 1688–1703.

    Google Scholar 

  • Gutmann, J. S., Fukuchi, M., & Fujita, M. (2005). Real-time path planning for humanoid robot navigation. In Proceedings of the 19th international joint conference on artificial intelligence (IJCAI), Edinburgh, UK (pp. 1232–1237).

  • Hatz, K. (2008). Estimating parameters in optimal control problems (Master’s thesis). IWR, Universität Heidelberg.

  • Heuberger, C. (2004). Inverse combinatorial optimization: a survey on problems, methods and results. Journal of Combinatorial Optimization, 8, 329–361.

    Article  MATH  MathSciNet  Google Scholar 

  • Hicheur, H., Pham, Q. C., Arechavaleta, G., Laumond, J. P., & Berthoz, A. (2007). The formation of trajectories during goal-oriented locomotion in humans I: a stereotyped behaviour. European Journal of Neuroscience, 26, 2376–2390.

    Article  Google Scholar 

  • Ijspeert, A. J. (2001). A connectionist central pattern generator for the aquatic and terrestrial gaits of a simulated salamander. Biological Cybernetics, 84(5), 331–348.

    Article  Google Scholar 

  • Ikeuchi, K. (2009). Dance and robotics. In Digital human symposium.

  • Kajita, S. et al. (2003). Biped walking pattern generation by using preview control of zero-moment point. In Proceedings of IEEE international conference on robotics and automation (ICRA) (pp. 1620–1626).

  • Kanehiro, F., Hirukawa, H., & Kajita, S. (2004). OpenHRP: Open architecture humanoid robotics platform. International Journal of Robotics Research, 23(2), 155–165.

    Article  Google Scholar 

  • Kaneko, K. et al. (2004). The humanoid robot HRP-2. In Proceedings of IEEE int. conf. on robotics and automation (ICRA) (pp. 1083–1090).

  • Latombe, J. C. (1991). Robot motion planning. Dordrecht: Kluwer Academic.

    Google Scholar 

  • Laumond, J. P. (Ed.) (1998). Lecture notes in control and information science. Robot motion planning and control. Berlin: Springer.

    Google Scholar 

  • Laumond, J. P., Arechavaleta, G., Truong, T. V. A., Hicheur, H., Pham, Q. C., & Berthoz, A. (2007). The words of the human locomotion. In Springer star series. Proceedings of 13th international symposium on robotics research (ISRR-2007). Berlin: Springer.

    Google Scholar 

  • LaValle, S. M. (2006). Planning algorithms. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Leineweber, D. B., Bauer, I., Bock, H. G., & Schlöder, J. P. (2003a). An efficient multiple shooting based reduced SQP strategy for large-scale dynamic process optimization—part I: theoretical aspects. Computers and Chemical Engineering, 27, 157–166.

    Article  Google Scholar 

  • Leineweber, D. B., Schäfer, A., Bock, H. G., & Schlöder, J. P. (2003b). An efficient multiple shooting based reduced SQP strategy for large-scale dynamic process optimization—part II: software aspects and applications. Computers and Chemical Engineering, 27, 167–174.

    Article  Google Scholar 

  • Liu, C. K., Hertzmann, A., & Popovic, Z. (2005). Learning physics-based motion style with inverse optimization. ACM Transactions on Graphics (SIGGRAPH 2005), 24, 1071–1081.

    Article  Google Scholar 

  • Luo, Z. Q., Pang, J. S., & Ralph, D. (1996). Mathematical programs with equilibrium constraints. Cambridge: Cambridge University Press.

    Google Scholar 

  • Mombaur, K. (2008). Using optimization to create self-stable human-like running. Robotica, 27, 321–330.

    Article  Google Scholar 

  • Mombaur, K. (2009). A numerical inverse optimal control method to identify optimality criteria of dynamical systems from measurements (in preparation).

  • Mombaur, K., Laumond, J. P., & Yoshida, E. (2008). An optimal control model unifying holonomic and nonholonomic walking. In Proceedings of IEEE humanoids, Daejon, Korea.

  • Mombaur, K., Laumond, J., & Truong, A. (2009). An inverse optimal control approach to human motion modeling. In STAR series. Proceedings of international symposium of robotics research (ISRR). Berlin: Springer.

    Google Scholar 

  • Nakazawa, A., Nakaoka, S., Ikeuchi, K., & Yokoi, K. (2002). Imitating human dance motions through motion structure analysis. In Proceedings of IEEE IROS (Vol. 3, pp. 2539–2544).

  • Nelder, J. A., & Mead, R. (1965). A simplex method for function minimization. Computer Journal, 7, 308–313.

    MATH  Google Scholar 

  • Pettré, J., Siméon, T., & Laumond, J. P. (2003). A 2-stage locomotion planner for digital actors. In ACM Eurographics symposium on computer animation.

  • Powell, M. J. D. (2008). Developments of newuoa for unconstrained minimization without derivatives. IMA Journal of Numerical Analysis, 28, 649–664.

    Article  MATH  MathSciNet  Google Scholar 

  • Powell, M. J. D. (2009). The BOBYQA algorithm for bound constrained optimization without derivatives (Report No. DAMTP 2009/NA06). Centre for Mathematical Sciences, University of Cambridge, UK.

  • Schultz, G., & Mombaur, K. (2009). Modeling and optimal control of human-like running. IEEE/ASME Transactions on Mechatronics (to appear).

  • Stasse, O., Davison, A. J., Sellaouti, R., & Yokoi, K. (2006). Real-time 3D SLAM for humanoid robot considering pattern generator information. In Proceedings of IEEE/RSJ international conference on intelligent robots and systems (IROS), Beijing, China (pp. 348–355).

  • Suleiman, W., Yoshida, E., Kanehiro, F., Laumond, J. P., & Monin, A. (2008). On human motion imitation by humanoid robot. In Proceedings of IEEE ICRA.

  • Ye, J. (2005). Necessary and sufficient optimality conditions for mathematical programs with equilibrium constraints. Journal of Mathematical Analysis and Applications, 307, 350–369.

    Article  MATH  MathSciNet  Google Scholar 

  • Yoshida, E., Belousov, I., Esteves, C., Laumond, J. P., Sakaguchi, T., & Yokoi, K. (2008). Planning 3-d collision-free dynamic robotic motion through iterative reshaping. IEEE Transactions on Robotics, 24(5), 1186–1198.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Katja Mombaur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mombaur, K., Truong, A. & Laumond, JP. From human to humanoid locomotion—an inverse optimal control approach. Auton Robot 28, 369–383 (2010).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: