Skip to main content
Log in

A framework for compliant physical interaction

The grasp meets the task

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

Although the grasp-task interplay in our daily life is unquestionable, very little research has addressed this problem in robotics. In order to fill the gap between the grasp and the task, we adopt the most successful approaches to grasp and task specification, and extend them with additional elements that allow to define a grasp-task link. We propose a global sensor-based framework for the specification and robust control of physical interaction tasks, where the grasp and the task are jointly considered on the basis of the task frame formalism and the knowledge-based approach to grasping. A physical interaction task planner is also presented, based on the new concept of task-oriented hand preshapes. The planner focuses on manipulation of articulated parts in home environments, and is able to specify automatically all the elements of a physical interaction task required by the proposed framework. Finally, several applications are described, showing the versatility of the proposed approach, and its suitability for the fast implementation of robust physical interaction tasks in very different robotic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Asfour, T., Regenstein, K., Azad, P., Schroder, J., Bierbaum, A., Vahrenkamp, N., & Dillmann, R. (2006). Armar-iii: An integrated humanoid platform for sensory-motor control. In IEEE-RAS international conference on humanoid robots (pp. 169–175).

  • Baeten, J., Bruyninckx, H., & De Schutter, J. (2003). Integrated vision/force robotic servoing in the task frame formalism. International Journal of Robotics Research, 22(10–11), 941–954.

    Google Scholar 

  • Bard, C., Laugier, C., Milési-Bellier, C., Troccaz, J., Triggs, B., & Vercelli, G. (1995). Achieving dextrous grasping by integrating planning and vision-based sensing. International Journal of Robotics Research, 14(5), 445–464.

    Article  Google Scholar 

  • Bekey, G., Liu, H., Tomovic, R., & Karplus, W. (1993). Knowledge-based control of grasping in robot hands using heuristics from human motor skills. IEEE Transactions on Robotics and Automation, 9(6), 709–722. doi:10.1109/70.265915.

    Article  Google Scholar 

  • Bicchi, A., & Kumar, V. (2000). Robotic grasping and contact: A review. In IEEE international conference on robotics and automation, San Francisco, CA (pp. 348–353).

  • Borst, C., Fischer, M., & Hirzinger, G. (2004). Grasp planning: How to choose a suitable task wrench space. In IEEE international conference on robotics and automation, New Orleans, USA (pp. 319–325).

  • Bruyninckx, H., & De Schutter, J. (1996). Specification of force-controlled actions in the ‘task frame formalism’: A synthesis. IEEE Transactions on Robotics and Automation, 12(5), 581–589.

    Article  Google Scholar 

  • Cutkosky, M., & Wright, P. (1986). Modeling manufacturing grips and correlations with the design of robotic hands. In IEEE international conference on robotics and automation, San Francisco, CA (Vol. 3, pp. 1533–1539).

  • De Schutter, J., De Laet, T., Rutgeerts, J., Decré, W., Smits, R., Aertbeliën, E., Claes, K., & Bruyninckx, H. (2007). Constraint-based task specification and estimation for sensor-based robot systems in the presence of geometric uncertainty. International Journal of Robotics Research, 26(5), 433–455.

    Article  Google Scholar 

  • Graf, B., Hans, M., & Schraft, R. (2004). Care-o-bot ii-development of a next generation robotic home assistant. Autonomous Robots, 16(2), 193–205.

    Article  Google Scholar 

  • Haschke, R., Steil, J., Steuwer, I., & Ritter, H. (2005). Task-oriented quality measures for dextrous grasping. In IEEE conf. on computational intelligence in robotics and automation, Espoo, Finland (pp. 689–694).

  • Huebner, K., & Kragic, D. (2008). Selection of robot pre-grasps using box-based shape approximation. In IEEE/RSJ international conference on intelligent robots and systems (pp. 1765–1770).

  • Huebner, K., Ruthotto, S., & Kragic, D. (2008). Minimum volume bounding box decomposition for shape approximation in robot grasping. In IEEE international conference on robotics and automation (pp. 1628–1633).

  • Kaneko, K., Kanehiro, F., Kajita, S., Hirukawa, H., Kawasaki, T., Hirata, M., Akachi, K., & Isozumi, T. (2004). Humanoid robot hrp-2. In IEEE international conference on robotics and automation, New Orleans, USA (Vol. 2, pp. 1083–1090).

  • Katz, D., & Brock, O. (2008). Manipulating articulated objects with interactive perception. In IEEE international conference on robotics and automation, Pasadena, USA (pp. 272–277).

  • Kemp, C. C., Anderson, C. D., Nguyen, H., Trevor, A. J., & Xu, Z. (2008). A point-and-click interface for the real world: laser designation of objects for mobile manipulation. In ACM/IEEE international conference on human robot interaction, New York, NY, USA (pp. 241–248).

  • Khatib, O. (1987). A unified approach for motion and force control of robot manipulators: The operational space formulation. IEEE Journal of Robotics and Automation, 3(1), 43–53.

    Article  Google Scholar 

  • Latombe, J. C. (1991). Robot motion planning. Dordrecht: Kluwer Academic.

    Google Scholar 

  • Lee, S., Lee, S., Lee, J., Moon, D., Kim, E., & Seo, J. (2007). Robust recognition and pose estimation of 3D objects based on evidence fusion in a sequence of images. In IEEE International Conference on Robotics and Automation, Rome, Italy (pp. 3773–3779).

  • Li, Z., & Sastry, S. (1987). Task oriented optimal grasping by multifingered robot hands. In IEEE international conference on robotics and automation, Raleigh, North Carolina (Vol. 4, pp. 389–394).

  • Lyons, D. (1985). A simple set of grasps for a dextrous hand. In IEEE International Conference on Robotics and Automation (Vol. 2, pp. 588–593).

  • Mackenzie, C., & Iberall, T. (1994). The grasping hand. Amsterdam: North-Holland.

    Google Scholar 

  • Marrone, F., Raimondi, F., & Strobel, M. (2002). Compliant interaction of a domestic service robot with a human and the environment. In 33rd int. symposium on robotics, Stockholm, Sweden (pp. 7–11).

  • Mason, M. (1981). Compliance and force control for computer-controlled manipulators. IEEE Transactions on Systems, Man, and Cybernetics, 11(6), 418–432.

    Article  Google Scholar 

  • Mezouar, Y., Prats, M., & Martinet, P. (2007). External hybrid vision/force control. In International conference on advanced robotics, Jeju, Korea (pp. 170–175).

  • Miller, A. T., & Allen, P. K. (1999). Examples of 3D grasp quality computations. In IEEE international conference on robotics and automation, Detroit, Michigan (pp. 1240–1246).

  • Miller, A. T., Knoop, S., Christensen, H. I., & Allen, P. K. (2003). Automatic grasp planning using shape primitives. In IEEE international conference on robotics and automation, Taipei, Taiwan (pp. 1824–1829).

  • Morales, A., Asfour, T., Azad, P., Knoop, S., & Dillmann, R. (2006). Integrated grasp planning and visual object localization for a humanoid robot with five-fingered hands. In IEEE/RSJ international conference on intelligent robots and systems, Beijing, China (pp. 5663–5668).

  • Napier, J. (1956). The prehensile movements of the human hand. Journal of Bone and Joint Surgery, 38-B(4), 902–13.

    Google Scholar 

  • Nguyen, H., & Kemp, C. C. (2008). Bio-inspired assistive robotics: Service dogs as a model for human-robot interaction and mobile manipulation. In 2nd IEEE RAS & EMBS international conference on biomedical robotics and biomechatronics (pp. 542–549), doi:10.1109/BIOROB.2008.4762910.

  • Niemeyer, G., & Slotine, J. J. (1997). A simple strategy for opening an unknown door. In IEEE international conference on robotics and automation, Albuquerque, NM, USA (Vol. 2, pp. 1448–1453).

  • Okamura, A. M., Smaby, N., & Cutkosky, M. R. (2000). An overview of dexterous manipulation. In IEEE international conference on robotics and automation, San Francisco, CA, USA (pp. 255–262).

  • Ott, C., Bäuml, B., Borst, C., & Hirzinger, G. (2005). Employing Cartesian impedance control for the opening of a door: A case study in mobile manipulation. In IEEE/RSJ international conference on intelligent robots and systems workshop on mobile manipulators: Basic techniques, new trends & applications, Edmonton, Canada.

  • Petersson, L., Austin, D., & Kragic, D. (2000). High-level control of a mobile manipulator for door opening. In IEEE/RSJ international conference on intelligent robots and systems, Takamatsu, Kagawa, Japan (Vol. 3, pp. 2333–2338).

  • Petrovskaya, A., & Ng, A. (2007). Probabilistic mobile manipulation in dynamic environments with application to opening doors. In Int. joint conf. on artificial intelligence, Hyderabad, India.

  • Prats, M., del Pobil, A. P., & Sanz, P. (2007a). Task-oriented grasping using hand preshapes and task frames. In IEEE international conference on robotics and automation, Rome, Italy (pp. 1794–1799).

  • Prats, M., Sanz, P. J., del Pobil, A. P., Martínez, E., & Marín, R. (2007b). Towards multipurpose autonomous manipulation with the UJI service robot. ROBOTICA, 25(2), 245–256.

    Article  Google Scholar 

  • Prats, M., Martinet, P., del Pobil, A. P., & Lee, S. (2008a). Robotic execution of everyday tasks by means of external vision/force control. Intelligent Service Robotics, 1(3), 253–266.

    Article  Google Scholar 

  • Prats, M., Martinet, P., Sanz, P. J., & Lee, S. (2008b). Compliant physical interaction based on external vision-force control and tactile-force combination. In IEEE international conference on multisensor fusion and integration, Seoul, South Korea (pp. 405–410).

  • Prats, M., Wieland, S., Asfour, T., del Pobil, A. P., & Dillmann, R. (2008c). Compliant interaction in household environments by the armar-iii humanoid robot. In IEEE-RAS international conference on humanoid robots, Daejeon, South Korea (pp. 475–480).

  • Prats, M., Sanz, P. J., & del Pobil, A. P. (2009). Vision-tactile-force integration and robot physical interaction. In IEEE international conference on robotics and automation, Kobe, Japan (pp. 3975–3980).

  • Quigley, M., Berger, E., & Ng, A. Y. (2007). Stair: Hardware and software architecture. In AAAI 2007 robotics workshop.

  • Raibert, M., & Craig, J. (1981). Hybrid position/force control of manipulators. ASME Journal of Dynamic Systems, Measurement and Control, 102(2), 126–133.

    Article  Google Scholar 

  • Saxena, A., Driemeyer, J., & Ng, A. Y. (2008). Robotic grasping of novel objects using vision. International Journal of Robotics Research, 27(2), 157–173.

    Article  Google Scholar 

  • Schlesinger, G. (1919). Der mechanische Aufbau der kunstlichen Glieder in Ersatzglieder und Arbeitshilfen. Berlin: Springer.

    Google Scholar 

  • Stansfield, S. (1991). Robotic grasping of unknown objects: A knowledge-based approach. International Journal of Robotics Research, 10(4), 314–326.

    Article  Google Scholar 

  • Thomas, U., Finkemeyer, B., Kröger, T., & Wahl, F. (2003). Error-tolerant execution of complex robot tasks based on skill primitives. In IEEE international conference on robotics and automation, Taipei, Taiwan (Vol. 3, pp. 3069–3075).

  • Wren, D., & Fisher, R. (1995). Dextrous hand grasping strategies using preshapes and digit trajectories. In IEEE international conference on systems, man and cybernetics, Vancouver, BC, Canada (Vol. 1, pp. 910–915).

  • Wyrobek, K., Berger, E., Van der Loos, H., & Salisbury, J. (2008). Towards a personal robotics development platform: Rationale and design of an intrinsically safe personal robot. In IEEE international conference on robotics and automation, Pasadena, California (pp. 2165–2170).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Prats.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prats, M., Sanz, P.J. & del Pobil, A.P. A framework for compliant physical interaction. Auton Robot 28, 89–111 (2010). https://doi.org/10.1007/s10514-009-9145-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-009-9145-8

Keywords

Navigation