Exploring the use of a mobile robot as an imitation agent with children with low-functioning autism

Abstract

Unpredictability and complexity of social interactions are important challenges for a low functioning autistic child. The objective of this research is to study how a mobile robot can, by appearing more predictable, appealing and simple than a human being, facilitate reciprocal interaction such as imitative play. By conducting an exploratory study involving four children, we found that forms of shared conventions such as imitation of body movements and of familiar actions are higher with two children paired with a human mediator, compared to two children paired with a robot mediator. However, the two children paired with the robot mediator demonstrated increased shared attention (visual contact, physical proximity) and imitate facial expressions (smile) more than the children paired with the human mediator.

This is a preview of subscription content, log in to check access.

References

  1. Adrien, J.-L. (1996). Autisme du jeune enfant. Développement psychologique et regulation de l’activité. Collection Autisme, éd Expansion Scientifique Française.

  2. American Psychiatric Association. (2000). DSM-IV-TR Diagnostic and Statistical Manual of Mental Disorders-IV—Text Revision.

  3. Aslin, R. N., & Shea, S. L. (1990). Velocity threshold in human infants: implications for the perception of motion. Developmental Psychology, 26, 589–598.

    Article  Google Scholar 

  4. Billard, A. (2000). Play, dreams and imitation in Robota. In Proceedings of the workshop on interactive robotics and entertainment (pp. 53–59).

  5. Blanc, R., Gomot, M., Gattegno, M. P., Barthélémy, C., & Adrien, J. L. (2002). Les troubles de l’activité symbolique chez des enfants autistes, dysphasiques et retardés mentaux et l’effet de l’étayage de l’adulte. Revue Québécoise de Psychologie.

  6. Camaioni, L., & Aureli, T. (2002). Trajectoires développementales et individuelles de la transition vers la communication symbolique. Enfance, 3.

  7. Charman, T., Baron-Cohen, S., Swettenham, J., Baird, G., Cox, A., & Drew, A. (2000). Testing joint attention, imitation, and play as infancy precursors to language and theory of mind. Cognitive Development, 15, 481–498.

    Article  Google Scholar 

  8. Dautenhahn, K. (2000). Design issues on interactive environments for children with autism. In Proceedings of the international conference on disability, virtual reality and associated technologies.

  9. Dautenhahn, K., & Billard, A. (2002). Games children with autism can play with Robota, a humanoid robotic doll. In Proceedings of the Cambridge workshop on universal access and assistive technology (pp. 179–190). New York: Springer.

    Google Scholar 

  10. Dannemiller, J. L., & Freeland, R. (1989). The detection of slow stimulus movement in 2- to 5-month olds. Journal of Experimental Child Psychology, 47, 337–355.

    Article  Google Scholar 

  11. Dautenhahn, K., & Werry, I. (2002). A quantitative technique for analyzing robot–human interactions. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (pp. 1132–1138).

  12. Dautenhahn, K., & Werry, I. (2004). Towards interactive robots in autism therapy: Background, motivation and challenges. Pragmatics and Cognition, 12(1), 1–35.

    Article  Google Scholar 

  13. Dautenhahn, K., Werry, I., Rae, J., Dickerson, P., Stribling, P., & Ogden, B. (2002). Robotic playmates: analysing interactive competencies of children with autism playing with a mobile robot. In Intelligent agents—creating relationships with computer and robots. Dordrecht: Kluwer Academic.

    Google Scholar 

  14. Doehring, P. (2001). Programmes d’intervention comportementale auprès des enfants autistes : quelles sont les meilleurs? Psychiatrie, recherche et intervention en santé mentale de l’enfant (PRISME), Approcher l’énigme de l’autisme, 34, 80–91.

    Google Scholar 

  15. Duquette, A. (2005). L’exploration d’une intervention avec un robot-jouet animé chez les enfants autistes. Master’s thesis, Department of Psycho-Education, Université de Sherbrooke.

  16. Fombonne, E. (2001). Études épidémiologiques de l’autisme et des troubles apparentés. Psychiatrie, recherche et intervention en santé mentale de l’enfant (PRISME), Approcher l’énigme de l’autisme, 34, 26–32.

    Google Scholar 

  17. Fortin, M.-F. (1996). Le processus de la recherche, de la conception à la réalisation. Québec Décarie Éditeur.

  18. Hauser, M. D. (1998). A nonhuman primate’s expectation about object motion and destination: the importance of self-propelled movement and animacy. Developmental Science, 1(1), 31–37.

    Article  Google Scholar 

  19. Kazdin, A. E. (1976). Statistical analysis for single-case experimental designs. In Hersen & Barlow (Eds.), Single case experimental designs.

  20. Kozima, H., & Yano, H. (2001). Designing a robot for contingency-detection game. In Proceedings of the international workshop on robotic and virtual agents in autism therapy.

  21. Kozima, H., Nakagawa, C., & Yasuda, Y. (2006). Wowing together: what facilitates social interactions in children with autistic spectrum disorders. In Proceedings international workshop on epigenetic robotics, modeling cognitive development in robotics systems (p. 177).

  22. Lemay, M. (2004). L’autisme aujourd’hui. Paris: Éd. Odile Jacob.

    Google Scholar 

  23. Michaud, F., & Théberge-Turmel, C. (2002). Mobile robotic toys and autism. In K. Dautenhahn, A. Bond, L. Canamero, & B. Edmonds (Eds.), Socially Intelligent Agents—Creating Relationships with Computers and Robots (pp. 125–132). Dordrecht: Kluwer Academic.

    Google Scholar 

  24. Michaud, F., Duquette, A., & Nadeau, I. (2003). Characteristics of mobile robotic toys for children with pervasive developmental disorders. In Proceedings of the IEEE international conference on systems, man, and cybernetics (pp. 2938–2943).

  25. Michaud, F., Létourneau, D., Arsenault, M., Bergeron, Y., Cadrin, R., Gagnon, F., et al. (2005). Multi-modal locomotion robotic platform using leg-track-wheel articulations. Autonomous Robots, Special Issue on Unconventional Robotic Mobility, 18(2), 137–156.

    Google Scholar 

  26. Michaud, F., Salter, T., Duquette, A., & Laplante, J.-F. (2007). Perspectives on mobile robots used as tools for pediatric rehabilitation. Assistive Technologies, Special Issue on Intelligent Systems in Pediatric Rehabilitation, 19, 14–29.

    Google Scholar 

  27. Nadel, J. (2002). Imitation and imitation recognition: functional use in preverbal infants and nonverbal children with autism. In Meltzoff & Prinz (Eds.), The imitative mind development evolution and brain bases.

  28. Nadel, J. (2004). Imitation et autisme. Revue Cerveau et Psycho, 68–71.

  29. Nadel, J., Revel, A., Andy, P., & Gaussier, Ph. (2004). Toward communication, first imitations in infants, low-functioning children with autism and robots. Interaction Studies, 5(1), 45–74.

    Article  Google Scholar 

  30. Pioggia, G., Ferro, M., Sica, M. L., Dalle Mura, G., Casalini, S., De Rossi, D., et al. (2006). Imitation and learning of the emotional behaviour: towards an android-based treatment for people with autism. In Proceedings international workshop on epigenetic robotics, modeling cognitive development in robotics systems (pp. 119–125).

  31. Premack, D. (1990). The infant’s theory of self-propelled objects. Cognition, 26, 1–16.

    Article  Google Scholar 

  32. Ricard, M., & Gouin-Décarie, T. (1990). L’humain et l’inanimé pour l’enfant de 9–10 mois. Enfance, 45(4), 351–360.

    Google Scholar 

  33. Robins, B., Dautenhahn, K., te Boekhorst, R., & Billard, A. (2004a). Robots as assistive technology—does appearance matter? In Proceedings of the IEEE international workshop on robot and human interactive communication.

  34. Robins, B., Dautenhahn, K., te Boekhorst, R., & Billard, A. (2004b). Effects of repeated exposure to a humanoid robot on children with autism. In Proceedings of the Cambridge workshop on universal access and assistive technology (pp. 225–236). New York: Springer.

    Google Scholar 

  35. Robins, B., Dickerson, P., Stribling, P., & Dautenhahn, K. (2004c). Robot-mediated joint attention in children with autism: a case study in robot–human interaction. Interaction Studies: Social Behaviour and Communication in Biological and Artificial Systems, 5(2), 161–198.

    Google Scholar 

  36. Robins, B., Dickerson, P., Stribling, P., & Dautenhahn, K. (2005a). Robot-mediated joint attention in therapy and ducation of children with autism: can a small humanoid robot help encourage social interaction skills? Universal Access in the Information Society, 4(2).

  37. Robins, B., Dickerson, P., & Dautenhahn, K. (2005b). Robots as embodied beings—interactionally sensitive body movements in interactions among autistic children and a robot. In Proceedings IEEE international workshop on robots and human interactive communication (pp. 54–59).

  38. Scassellati, B. (2005). Quantitative metrics of social response for autism diagnosis. In Proceedings IEEE international workshop on robots and human interactive communication.

  39. Schopler, E., Reichler, R. J., Bashford, A., Lansing, M. D., & Marcus, L. M. (1990). The Psychoeducational Profile Revised (PEP-R). Austin.

  40. Sekuler, R. (1975). Visual motion perception. In E. C. Carterette & M. P. Friedman (Eds.), Handbook of perception, Vol. 5. Seeing (pp. 387–430). New York: Academic Press.

    Google Scholar 

  41. Spitz, R. A. (1976). De la naissance à la parole : la première année de vie (5e éd.). Paris: Presse Universitaires de France.

    Google Scholar 

  42. Weir, S., & Emanuel, R. (1976). Using LOGO to catalyse communication in an autistic child. Technical Report DAI Research Report No. 15, University of Edinburgh.

  43. Werry, I., Dautenhahn, K., & Harwin, W. (2001). Evaluating the response of children with autism to a robot. In Proceedings of the rehabilitation engineering and assistive technology society of North America (RESNA).

  44. Wetherby, A. M., & Prutting, C. A. (1984). Profiles of communicative and cognitive-social abilities in autistic children. Journal of Speech and Hearing Research, 28, 364–377.

    Google Scholar 

  45. Zilbovicius, M. (2004). Imagerie cérébrale et autisme infantile. Revue Cerveau et Psychologie.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to François Michaud.

Additional information

This work was supported in part by the Canada Research Chair (CRC), the Fonds québécois de recherche sur la nature et les technologies (FQRNT) and the Canadian Foundation for Innovation (CFI).

F. Michaud holds the Canada Research Chair in Mobile Robotics and Intelligent Autonomous Systems.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Duquette, A., Michaud, F. & Mercier, H. Exploring the use of a mobile robot as an imitation agent with children with low-functioning autism. Auton Robot 24, 147–157 (2008). https://doi.org/10.1007/s10514-007-9056-5

Download citation

Keywords

  • Mobile robotics
  • Pediatric rehabilitation
  • Low-functioning autism
  • Human-robot interaction