Advertisement

Autonomous Robots

, Volume 24, Issue 2, pp 147–157 | Cite as

Exploring the use of a mobile robot as an imitation agent with children with low-functioning autism

  • Audrey Duquette
  • François MichaudEmail author
  • Henri Mercier
Article

Abstract

Unpredictability and complexity of social interactions are important challenges for a low functioning autistic child. The objective of this research is to study how a mobile robot can, by appearing more predictable, appealing and simple than a human being, facilitate reciprocal interaction such as imitative play. By conducting an exploratory study involving four children, we found that forms of shared conventions such as imitation of body movements and of familiar actions are higher with two children paired with a human mediator, compared to two children paired with a robot mediator. However, the two children paired with the robot mediator demonstrated increased shared attention (visual contact, physical proximity) and imitate facial expressions (smile) more than the children paired with the human mediator.

Keywords

Mobile robotics Pediatric rehabilitation Low-functioning autism Human-robot interaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adrien, J.-L. (1996). Autisme du jeune enfant. Développement psychologique et regulation de l’activité. Collection Autisme, éd Expansion Scientifique Française. Google Scholar
  2. American Psychiatric Association. (2000). DSM-IV-TR Diagnostic and Statistical Manual of Mental Disorders-IV—Text Revision. Google Scholar
  3. Aslin, R. N., & Shea, S. L. (1990). Velocity threshold in human infants: implications for the perception of motion. Developmental Psychology, 26, 589–598. CrossRefGoogle Scholar
  4. Billard, A. (2000). Play, dreams and imitation in Robota. In Proceedings of the workshop on interactive robotics and entertainment (pp. 53–59). Google Scholar
  5. Blanc, R., Gomot, M., Gattegno, M. P., Barthélémy, C., & Adrien, J. L. (2002). Les troubles de l’activité symbolique chez des enfants autistes, dysphasiques et retardés mentaux et l’effet de l’étayage de l’adulte. Revue Québécoise de Psychologie. Google Scholar
  6. Camaioni, L., & Aureli, T. (2002). Trajectoires développementales et individuelles de la transition vers la communication symbolique. Enfance, 3. Google Scholar
  7. Charman, T., Baron-Cohen, S., Swettenham, J., Baird, G., Cox, A., & Drew, A. (2000). Testing joint attention, imitation, and play as infancy precursors to language and theory of mind. Cognitive Development, 15, 481–498. CrossRefGoogle Scholar
  8. Dautenhahn, K. (2000). Design issues on interactive environments for children with autism. In Proceedings of the international conference on disability, virtual reality and associated technologies. Google Scholar
  9. Dautenhahn, K., & Billard, A. (2002). Games children with autism can play with Robota, a humanoid robotic doll. In Proceedings of the Cambridge workshop on universal access and assistive technology (pp. 179–190). New York: Springer. Google Scholar
  10. Dannemiller, J. L., & Freeland, R. (1989). The detection of slow stimulus movement in 2- to 5-month olds. Journal of Experimental Child Psychology, 47, 337–355. CrossRefGoogle Scholar
  11. Dautenhahn, K., & Werry, I. (2002). A quantitative technique for analyzing robot–human interactions. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (pp. 1132–1138). Google Scholar
  12. Dautenhahn, K., & Werry, I. (2004). Towards interactive robots in autism therapy: Background, motivation and challenges. Pragmatics and Cognition, 12(1), 1–35. CrossRefGoogle Scholar
  13. Dautenhahn, K., Werry, I., Rae, J., Dickerson, P., Stribling, P., & Ogden, B. (2002). Robotic playmates: analysing interactive competencies of children with autism playing with a mobile robot. In Intelligent agents—creating relationships with computer and robots. Dordrecht: Kluwer Academic. Google Scholar
  14. Doehring, P. (2001). Programmes d’intervention comportementale auprès des enfants autistes : quelles sont les meilleurs? Psychiatrie, recherche et intervention en santé mentale de l’enfant (PRISME), Approcher l’énigme de l’autisme, 34, 80–91. Google Scholar
  15. Duquette, A. (2005). L’exploration d’une intervention avec un robot-jouet animé chez les enfants autistes. Master’s thesis, Department of Psycho-Education, Université de Sherbrooke. Google Scholar
  16. Fombonne, E. (2001). Études épidémiologiques de l’autisme et des troubles apparentés. Psychiatrie, recherche et intervention en santé mentale de l’enfant (PRISME), Approcher l’énigme de l’autisme, 34, 26–32. Google Scholar
  17. Fortin, M.-F. (1996). Le processus de la recherche, de la conception à la réalisation. Québec Décarie Éditeur. Google Scholar
  18. Hauser, M. D. (1998). A nonhuman primate’s expectation about object motion and destination: the importance of self-propelled movement and animacy. Developmental Science, 1(1), 31–37. CrossRefGoogle Scholar
  19. Kazdin, A. E. (1976). Statistical analysis for single-case experimental designs. In Hersen & Barlow (Eds.), Single case experimental designs. Google Scholar
  20. Kozima, H., & Yano, H. (2001). Designing a robot for contingency-detection game. In Proceedings of the international workshop on robotic and virtual agents in autism therapy. Google Scholar
  21. Kozima, H., Nakagawa, C., & Yasuda, Y. (2006). Wowing together: what facilitates social interactions in children with autistic spectrum disorders. In Proceedings international workshop on epigenetic robotics, modeling cognitive development in robotics systems (p. 177). Google Scholar
  22. Lemay, M. (2004). L’autisme aujourd’hui. Paris: Éd. Odile Jacob. Google Scholar
  23. Michaud, F., & Théberge-Turmel, C. (2002). Mobile robotic toys and autism. In K. Dautenhahn, A. Bond, L. Canamero, & B. Edmonds (Eds.), Socially Intelligent Agents—Creating Relationships with Computers and Robots (pp. 125–132). Dordrecht: Kluwer Academic. Google Scholar
  24. Michaud, F., Duquette, A., & Nadeau, I. (2003). Characteristics of mobile robotic toys for children with pervasive developmental disorders. In Proceedings of the IEEE international conference on systems, man, and cybernetics (pp. 2938–2943). Google Scholar
  25. Michaud, F., Létourneau, D., Arsenault, M., Bergeron, Y., Cadrin, R., Gagnon, F., et al. (2005). Multi-modal locomotion robotic platform using leg-track-wheel articulations. Autonomous Robots, Special Issue on Unconventional Robotic Mobility, 18(2), 137–156. Google Scholar
  26. Michaud, F., Salter, T., Duquette, A., & Laplante, J.-F. (2007). Perspectives on mobile robots used as tools for pediatric rehabilitation. Assistive Technologies, Special Issue on Intelligent Systems in Pediatric Rehabilitation, 19, 14–29. Google Scholar
  27. Nadel, J. (2002). Imitation and imitation recognition: functional use in preverbal infants and nonverbal children with autism. In Meltzoff & Prinz (Eds.), The imitative mind development evolution and brain bases. Google Scholar
  28. Nadel, J. (2004). Imitation et autisme. Revue Cerveau et Psycho, 68–71. Google Scholar
  29. Nadel, J., Revel, A., Andy, P., & Gaussier, Ph. (2004). Toward communication, first imitations in infants, low-functioning children with autism and robots. Interaction Studies, 5(1), 45–74. CrossRefGoogle Scholar
  30. Pioggia, G., Ferro, M., Sica, M. L., Dalle Mura, G., Casalini, S., De Rossi, D., et al. (2006). Imitation and learning of the emotional behaviour: towards an android-based treatment for people with autism. In Proceedings international workshop on epigenetic robotics, modeling cognitive development in robotics systems (pp. 119–125). Google Scholar
  31. Premack, D. (1990). The infant’s theory of self-propelled objects. Cognition, 26, 1–16. CrossRefGoogle Scholar
  32. Ricard, M., & Gouin-Décarie, T. (1990). L’humain et l’inanimé pour l’enfant de 9–10 mois. Enfance, 45(4), 351–360. Google Scholar
  33. Robins, B., Dautenhahn, K., te Boekhorst, R., & Billard, A. (2004a). Robots as assistive technology—does appearance matter? In Proceedings of the IEEE international workshop on robot and human interactive communication. Google Scholar
  34. Robins, B., Dautenhahn, K., te Boekhorst, R., & Billard, A. (2004b). Effects of repeated exposure to a humanoid robot on children with autism. In Proceedings of the Cambridge workshop on universal access and assistive technology (pp. 225–236). New York: Springer. Google Scholar
  35. Robins, B., Dickerson, P., Stribling, P., & Dautenhahn, K. (2004c). Robot-mediated joint attention in children with autism: a case study in robot–human interaction. Interaction Studies: Social Behaviour and Communication in Biological and Artificial Systems, 5(2), 161–198. Google Scholar
  36. Robins, B., Dickerson, P., Stribling, P., & Dautenhahn, K. (2005a). Robot-mediated joint attention in therapy and ducation of children with autism: can a small humanoid robot help encourage social interaction skills? Universal Access in the Information Society, 4(2). Google Scholar
  37. Robins, B., Dickerson, P., & Dautenhahn, K. (2005b). Robots as embodied beings—interactionally sensitive body movements in interactions among autistic children and a robot. In Proceedings IEEE international workshop on robots and human interactive communication (pp. 54–59). Google Scholar
  38. Scassellati, B. (2005). Quantitative metrics of social response for autism diagnosis. In Proceedings IEEE international workshop on robots and human interactive communication. Google Scholar
  39. Schopler, E., Reichler, R. J., Bashford, A., Lansing, M. D., & Marcus, L. M. (1990). The Psychoeducational Profile Revised (PEP-R). Austin. Google Scholar
  40. Sekuler, R. (1975). Visual motion perception. In E. C. Carterette & M. P. Friedman (Eds.), Handbook of perception, Vol. 5. Seeing (pp. 387–430). New York: Academic Press. Google Scholar
  41. Spitz, R. A. (1976). De la naissance à la parole : la première année de vie (5e éd.). Paris: Presse Universitaires de France. Google Scholar
  42. Weir, S., & Emanuel, R. (1976). Using LOGO to catalyse communication in an autistic child. Technical Report DAI Research Report No. 15, University of Edinburgh. Google Scholar
  43. Werry, I., Dautenhahn, K., & Harwin, W. (2001). Evaluating the response of children with autism to a robot. In Proceedings of the rehabilitation engineering and assistive technology society of North America (RESNA). Google Scholar
  44. Wetherby, A. M., & Prutting, C. A. (1984). Profiles of communicative and cognitive-social abilities in autistic children. Journal of Speech and Hearing Research, 28, 364–377. Google Scholar
  45. Zilbovicius, M. (2004). Imagerie cérébrale et autisme infantile. Revue Cerveau et Psychologie. Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Audrey Duquette
    • 1
  • François Michaud
    • 2
    Email author
  • Henri Mercier
    • 1
  1. 1.Department of Psycho-EducationUniversité de SherbrookeQuébecCanada
  2. 2.Department of Electrical Engineering and Computer EngineeringUniversité de SherbrookeQuébecCanada

Personalised recommendations