Skip to main content
Log in

Control of the Observables in the Finite-Level Quantum Systems

  • Determinate Systems
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

A new approach to designing the velocity gradient-based algorithms to control the observables of the quantum-mechanical systems was proposed. The aim of control was shown to be feasible under the nondegeneracy-type conditions, provided that the initial and target values lie in the same energy layer. The error of attaining the aim of control was shown to be proportional to that of defining the initial system state and the error of realization of the control action. For the problem of controlling predissociation of the hydrogen fluoride molecule, numerical results were presented. Design of the proposed algorithms features simplicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Butkovskii, A.G. and Samoilenko, Yu.I., Control of Quantum Objects. I, II, Avtom. Telemekh., 1979, no. 4, pp. 5–25; no. 5, pp. 5–23.

  2. Huang, G.M., Tarn, T.J., and Clark, J.W., Math. Modelling, 1980, no. 1, p. 109.

  3. Belavkin, V.P., On the Theory of Control of Quantum Observable Systems, Avtom. Telemekh., 1983, no. 2, pp. 50–63.

  4. Butkovskii, A.G. and Samoilenko, Yu.I., Upravlenie kvantovo-mekhanicheskimi protsessami (Control of Quantum-mechanical Processes), Moscow: Nauka, 1984.

    Google Scholar 

  5. Iskenderov, A.G. and Yagubov, G.Ya., Optimal Control of Nonlinear Quantum-mechanical Systems, Avtom. Telemekh., 1988, no. 1, pp. 27–38.

  6. Zavalishin, D.S. and Revenko, V.V., Optimizing the Kinetic Energy of a Microobject, Izv. Akad. Nauk SSSR, Tekh. Kibern., 1988, no. 3, pp. 143–147.

  7. Zewail, A., Femtochemistry: Atomic-scale Dynamics of the Chemical Bond (Adapted from the Nobel Lecture), J. Phys. Chem. A, 2000, no. 104, pp. 5660–5694.

  8. Shapiro, M. and Brumer, P., Laser Control of Product Quantum State Populations in Unimolecular Reactions, J. Chem. Phys., 1986, vol. 84, pp. 4103–4110.

    Article  CAS  Google Scholar 

  9. Tannor, D.J. and Rice, S.A., Control of Selectivity of Chemical Reaction via Control of Wave Packet Evolution, J. Chem. Phys., 1985, vol. 83, p. 5013.

    CAS  Google Scholar 

  10. Kosloff, R., Rice, S.A., Gaspard, P., et al., Wavepacket Dancing: Achieving Chemical Selectivity by Shaping Light-pulses, Chem. Phys., 1989, vol. 139, p. 201.

    Article  CAS  Google Scholar 

  11. Dahleh, M., Pierce, A., Rabitz, H., and Ramakrishna, V., Control of Molecular Motion, Proc. IEEE, 1996, vol. 84, no.1, pp. 7–15.

    CAS  Google Scholar 

  12. Judson, R.S. and Rabitz, H., Teaching Lasers to Control Molecules, Phys. Rev. Lett., 1992, vol. 68, p. 1500.

    CAS  PubMed  Google Scholar 

  13. Peirce, A., Dahleh, M., and Rabitz, H., Optimal Control of Quantum Mechanical Systems: Existence, Numerical Approximations and Applications, Phys. Rev. A., 1988, vol. 37, p. 4950.

    PubMed  Google Scholar 

  14. Rabitz, H., Algorithms for Closed Loop Control of Quantum Dynamics, in Proc. 39th IEEE Conf. Decisions and Control, Sydney, 2000, pp. 937–942.

  15. Assion, A., Baumert, T., Bergt, M., et al., Control of Chemical Reactions by Feedback-optimized Phase-shaped Femtosecond Laser Pulses, Science, 1998, vol. 282, p. 919.

    CAS  PubMed  Google Scholar 

  16. Bardeen, C.J., Yakovlev, V.V., Wilson, K.R., et al., Feedback Quantum Control of Molecular Electronic Population Transfer, Chem. Phys. Lett., 1997, vol. 280, p. 151.

    CAS  Google Scholar 

  17. Pearson, B.J., White, J.L., Weinacht, T.C., and Bucksbaum, P.H., Coherent Control Using Adaptive Learning Algorithms, Phys. Rev. A, 2001, vol. 63, no.6.

  18. Goggin, M.E. and Milonni, P.W., Driven Morse Oscillator: Classical Chaos. Quantum Theory and Photodissociation, Phys. Rev. A, 1988, vol. 37, no.3, p. 796.

    CAS  PubMed  Google Scholar 

  19. Goggin, M.E. and Milonni, P.W., Driven Morse Oscillator: Classical Chaos and Quantum Theory for Two-frequency Dissociation, Phys. Rev. A, 1988, vol. 38, no.10, p. 5174.

    CAS  PubMed  Google Scholar 

  20. Liu, W.K., Wu, B., and Yuan, J.M., Nonlinear Dynamics of Chirped Pulse Excitation and Dissociation of Diatomic Molecules, Phys. Rev. Lett., 1995, vol. 75, no.7, p. 1292.

    CAS  PubMed  Google Scholar 

  21. Yu, S., Gross, P., Ramakrishna, V., et al., Control of Classical Regime Molecular Objectives— Applications of Tracking and Variations of the Theme, Automatica, 1997, no. 9, pp. 1617–1633.

  22. Upravlenie molekulyarnymi i kvantovymi sistemami (Control of Molecular and Quantum Systems. Collected Translations), Fradkov, A.L. and Yakubovskii, O.A., Eds., Moscow: Inst. Komp. Issl., 2003.

    Google Scholar 

  23. Proc. Int. Conf. “Physics and Control,” Control of Microworld Processes. Nano-and Femtotechnologies, Fradkov, A.L. and Churilov, A.N., Eds., St. Petersburg: IEEE, 2003, vol. 3.

    Google Scholar 

  24. Valiev, K.A. and Kokin, A.A., Kvantovyi komp’yuter: mechta ili real’nost’? (Quantum Computer: Dream or reality?), Izhevsk: Inst. Komp. Issl., 2000.

    Google Scholar 

  25. Miroshnik, I.V., Nikiforov, V.O., and Fradkov, A.L., Nelineinoe i adaptivnoe upravlenie slozhnymi dinamicheskimi sistemami (Nonlinear and Adaptive Control of Complex Dynamic Systems), St. Petersburg: Nauka, 2000.

    Google Scholar 

  26. Barbashin, E.A., Vvedenie v teoriyu ustoichivosti (An Introduction to the Stability Theory), Moscow: Nauka, 1967.

    Google Scholar 

  27. Flugge, S., Practical Quantum Mechanics 2, Berlin: Springer, 1971. Translated under the title Zadachi po kvantovoi mekhanike 1, Moscow: Mir, 1974.

    Google Scholar 

  28. Gautschi, W. and Gander, W., Adaptive Quadrature—Revisited, BIT, 2000, vol. 40, pp. 84–101.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Avtomatika i Telemekhanika, No. 5, 2005, pp. 63–75.

Original Russian Text Copyright © 2005 by Anan’evskii, Fradkov.

This work was supported by the Russian Foundation for Basic Research, project no. 02-01-00765, Research Program of the Presidium of the Russian Academy of Sciences, project 1.4, and the Competitive Center for Fundamental Natural Science, project M04-2.1D-185.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anan’evskii, M.S., Fradkov, A.L. Control of the Observables in the Finite-Level Quantum Systems. Autom Remote Control 66, 734–745 (2005). https://doi.org/10.1007/s10513-005-0117-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10513-005-0117-y

Keywords

Navigation