Skip to main content
Log in

Control of spatial motion relative to moving external objects

  • Determinate Systems
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

Consideration was given to the control of spatial motion of dynamic (mechanical) systems with the desired trajectory defined in the coordinate system of an external moving object. New problem-oriented models of the trajectory motion and nonlinear control algorithms that are based on the differential-geometrical methods of the theory of nonlinear multivariable systems and intended to stabilize the system relative to the nonstationary trajectory were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Miroshnik, I.V., Fradkov, A.L., and Nikiforov, V.O., Nelineinoe i adaptivnoe upravlenie slozhnymi dinamicheskimi sistemami (Nonlinear and Adaptive Control of Complex Dynamic Systems), St. Petersburg: Nauka, 2000.

    Google Scholar 

  2. Korolev, S.M. and Miroshnik, I.V., Analysis of Dynamics and Control of Spatial Motion of Nonlinear Dynamic Systems, Avtom. Telemekh., 2000, no. 1, pp. 29–40.

  3. Miroshnik, I.V., Partial Stability and Geometrical Problems of Nonlinear Dynamics, Avtom. Telemekh., 2002, no. 11, pp. 39–55.

  4. Fradkov, A.L., Miroshnik, I.V., and Nikiforov, V.O., Nonlinear and Adaptive Control of Complex Systems, Dordrecht: Kluwer, 1999.

    MATH  Google Scholar 

  5. Medvedev, V.S., Leskov, A.G., and Yushchenko, A.S., Sistemy upravleniya manipulyatsionnykh robotov (Control Systems of Manipulation Robots), Moscow: Nauka, 1978.

    Google Scholar 

  6. Popov, E.P., Vereshchagin, A.F., and Zenkevich, S.A., Manipulyatsionnye roboty. Dinamika i algoritmy (Manipulation Robots. Dynamics and Algorithms), Moscow: Nauka, 1978.

    Google Scholar 

  7. Timofeev, A.V., Postroenie adaptivnykh sistem upravleniya programmnym dvizheniem (Design of Adaptive Control Systems of Program Motion), Leningrad: Energiya, 1980.

    Google Scholar 

  8. Murray, R.M., Zexiang, I.L., and Sastry, S.S., A Mathematical Introduction to Robotic Manipulation, Boca Raton: CRC Press, 1993.

    Google Scholar 

  9. Canudas de Wit, C., Siciliano, B., and Bastin, G., Theory of Robot Control, London: Springer, 1996.

    MATH  Google Scholar 

  10. Dixon, W., Dawson, D., Zergeroglu, E., and Behal, A., Nonlinear Control of Wheeled Mobile Robots, London: Springer, 2001.

    MATH  Google Scholar 

  11. Raibert, M.H. and Craig, J.J., Hybrid Position Force Control of Manipulators, J. Dynam. Syst., Measur. Control, 1981, vol. 102, pp. 126–133.

    Article  Google Scholar 

  12. Khatib, O., Real-time Obstacle Avoidance for Manipulators and Mobile Robots, Int. J. Robotics Res., 1986, vol. 5(1), pp. 90–98.

    MathSciNet  Google Scholar 

  13. Lizunov, A.B., Formal’skii, A.M., and Shnei’der, A.Yu., Control of Motion of the Manipulator with Short-range Location Sensors along the Object Contour, Avtom. Telemekh., 1987, no. 5, pp. 48–57.

  14. Seraji, H., Configuration Control of Redundant Manipulators: Theory and Implementation, IEEE Trans. Robot. Automat., 1989, vol. 5(4), pp. 472–490.

    Google Scholar 

  15. Miroshnik, I.V., Soglasovannoe upravlenie mnogokanal’nymi sistemami (Coordinated Control of Multichannel Systems), Leningrad: Energoatomizdat, 1990.

    Google Scholar 

  16. Soatto, S. and Perona, P., Structure-independent Visual Motion Control on the Essential Manifold, 4th IFAC Symp. Robot Control, Capri, 1994, vol. 3.

  17. Miroshnik, I.V. and Nikiforov, V.O., Coordinated Control of Spatial Motion of Manipulation Robots, in Analiz i upravlenie nelineinymi kolebatel’nymi sistemami (Analysis and Control of Nonlinear Oscillation Systems), Leonov, G.A. and Fradkov, A.L., Eds., St. Petersburg: Nauka, 1998.

    Google Scholar 

  18. Burdakov, S.F., Miroshnik, I.V., and Stel’makov, R.E., Sistemy upravleniya dvizheniem kolesnykh robotov (Control Systems of Wheeled Robot Motion), St. Petersburg: Nauka, 2001.

    Google Scholar 

  19. Miroshnik, I.V., Nikiforov, V.O., and Shiegin, V.V., Control of Motion of Kinematically Redundant Manipulation Robots, Izv. Ross. Akad. Nauk, Teor. Sist. Upravlen., 2001, no. 1, pp. 166–172.

  20. Akishita, S., Kawamura, S., and Hisanobu, T., Velocity Potential Approach to Path Planning for Avoiding Moving Obstacles, Advanced Robot, 1993, vol. 7, no.5, pp. 463–478.

    Article  Google Scholar 

  21. Hamilton, K. and Dodds, G.I., Heuristic Approach to Dynamic Motion Planning for Multi-link Planar Manipulators in a Sparse Time Varying Environment, IEEE Conf. SMC’95, 1995, pp. 904–909.

  22. Fiorini, P. and Shiller, Z., Time Optimal Trajectory Planning in Dynamic Environments, Proc. IEEE Int. Conf. Robot. Automat., 1996, pp. 1553–1558.

  23. Koh, K.C. and Cho, H.S., A Smooth Path Tracking Algorithm for Wheeled Mobile Robots with Dynamic Constraints, J. Intelligent Robot. Syst., 1999, vol. 24, pp. 367–385.

    MATH  Google Scholar 

  24. Stokic, D.M. and Vukobratovic, M.K., An Improved Method for Analysis of Practical Stability of Robots Interacting with a Dynamic Environment, Izv. Ross. Akad. Nauk, Teor. Sist. Upravlen., 2000, no. 4, pp. 186–192.

  25. Faiz, N. and Agrawal, S.K., Trajectory Planning of Robots with Dynamics and Inequalities, Proc. 2000 IEEE Int. Conf. Robot. Automat., 2000, vol. 4, pp. 3976–3982.

    Google Scholar 

  26. Miroshnik, I.V. and Sergeev, K.A., Nonlinear Control of Robot Spatial Motion in Dynamic Environments, Proc. Int. IEEE Conf. on Advanced Intel. Mechatronics (AIM’01), Como, 2001, vol. 2, pp. 1303–1306.

    Google Scholar 

  27. Zenkevich, S.L. and Yushchenko, A.S., Upravlenie robotami. Osnovy upravleniya manipulyatsionnymi robotami (Robot Control. Fundamentals of Control of the Manipulation Robots), Moscow: Mosk. Gos. Tekhn. Univ., 2000.

    Google Scholar 

  28. Korn, G.A. and Korn, T.M., Mathematical Handbook for Scientists and Engineers, New York: McGraw-Hill, 1968. Translated under the title Spravochnik po matematike, Moscow: Nauka, 1984.

    Google Scholar 

  29. Mishchenko, A.S. and Fomenko, A.G., Kurs differentsial’noi geometrii i topologii (Course of Differential Geometry and Topology), Moscow: Mosk. Gos. Univ., 1980.

    Google Scholar 

  30. Pervozvanskii, A.A., Kurs teorii avtomaticheskogo upravleniya (Course of Automatic Control), Moscow: Nauka, 1986.

    Google Scholar 

  31. Miroshnik, I.V., Partial Stabilization and Geometric Problems of Nonlinear Control, 15 IFAC World Congr., Barcelona, 2002.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Avtomatika i Telemekhanika, No. 4, 2005, pp. 70–83.

Original Russian Text Copyright © 2005 by Miroshnik, Sergeev.

This work was supported by the Russian Foundation for Basic Research and the Complex Program 19 of the Presidium of Russian Academy of Sciences (Section 1.4).

This paper was recommended for publication by V.A. Lototskii, a member of the Editorial Board

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miroshnik, I.V., Sergeev, K.A. Control of spatial motion relative to moving external objects. Autom Remote Control 66, 570–582 (2005). https://doi.org/10.1007/s10513-005-0101-6

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10513-005-0101-6

Keywords

Navigation