Skip to main content
Log in

E110-Type Zirconium Alloys – Dilatometric Determination of Solidus and Liquidus Temperatures

  • Published:
Atomic Energy Aims and scope

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

The initial and final melting temperatures of standard, optimized, and modernized zirconium alloy of the E110 type were determined. The stability of zirconium alloys both in terms of composition and phase state during high-temperature heating was secured by preventing contact interaction between the experimental samples and tooling materials. The following melting temperature of the investigated alloys was obtained with maximum error 0.5%: solidus 2116–2121 K, liquidus 2126–2133 K. It was found that iron and oxygen impurities do not affect the melting temperature of the investigated alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Deardorff and E. Hayes, “Melting point determination of hafnium, zirconium and titanium,” Trans. AIME, 206, 509–511 (1956).

    Google Scholar 

  2. H. Adenstedt, “Physical, thermal and electrical properties of hafnium high-purity zirconium,” Trans. Am. Soc. Metal., 44, 949–973 (1952).

    Google Scholar 

  3. D. Douglas, Metal Science of Zirconium, Atomizdat, Moscow (1975).

    Google Scholar 

  4. R. F. Domagala and D. J. McPherson, The Zirconium–Oxygen System. Zirconium [Russian translation], Izd. Inostr. Lit., Moscow (1955), Part 2, pp. 40–58.

  5. T. Tsuji and M. Amaya, “Study on order-disorder transition of Zr–O alloys (O/Zr = 0–0.31) by heat capacity measurement,” J. Nucl. Mater., 223, 33–39 (1995).

    Article  ADS  Google Scholar 

  6. P. Hayward and I. George, “Determination of the solidus temperatures of zircaloy-4/oxygen alloys,” J. Nucl. Mater., 273, 294–301 (1999).

    Article  ADS  Google Scholar 

  7. V. S. Chirkin, Thermophysical Properties of Nuclear Engineering Materials, Atomizdat, Moscow (1968).

    Google Scholar 

  8. I. I. Petrova, V. E. Peletskii, and B. N. Samsonov, “Investigation of the thermophysical properties of zirconium by subsecond pulsed heating,” Teplofiz. Vys. Temp., 38, No. 4, 584–589 (2000).

    Google Scholar 

  9. A. S. Zaimovskii, A. V. Nikulina, and N. G. Reshetnikov, Zirconium Alloys in Nuclear Power Engineering, Energoizdat, Moscow (1981).

    Google Scholar 

  10. I. I. Petrova and V. E. Peletskii, “Spectral (λ = 0.65 μm) emissivity and solidus temperature of the Zr–1% Nb alloy,” Teplofiz. Vys. Temp., 33, No. 5, 716–720 (1995).

    Google Scholar 

  11. Review of Zircaloy-2 and Zircaloy-4 Properties Relevant to NS Savannah Reactor Design, ORNL-3281 (1962), 17th ed.

  12. MATPRO-Version 11: a Handbook of Materials Properties for Use in the Analysis of Light Water Reactor Fuel Rod Behavior, Rep. No. NUREG/CR-0497, Idaho National Lab. (1979).

  13. G. V. Samsonov and I. M. Vinitskii, Handbook of Refractory Compounds, Metallurgiya, Moscow (1976).

    Google Scholar 

  14. ASTM E1363-18, Standard Test Method Temperature Calibration of Thermomechanical Analyzers, ASTM International, USA, Dec. 1, 2018.

  15. I. N. Izmalkov, L. P. Loshmanov, and A. V. Kostyukhina, “Mechanical properties of alloy E110 at temperatures to 1273 K,” Izv. Vys. Ucheb. Zaved. Yad. Energet., No. 2, 64–70 (2013).

  16. N. P. Lyakishev (ed.), Handbook of Diagrams of the State of Binary Metallic Systems, Mashinostroenie, Moscow (1996), Vol. 1.

  17. E. N. Marmer, Handbook of Carbon Materials, Metallurgiya, Mosow (1973).

  18. DIN 51007: 2019-04, Thermal Analysis – Differential Thermal Analysis (DTA) and Differential Scanning Calorimetry (DSC) – General Principles, Germany, Apr. 1, 2019.

  19. K. Anhalt, A. Schindler, T. Denner, et al., “Eutektische Hochtemperatur Fixpunkte für die Dynamisch Differenzkalorimetrie,” in: Proc. Conf. Sensoren und Messsysteme. ITG/GMA Fachtagung, Nurnberg, Mai 2010, pp. 192–196.

  20. Outokumpu HSC Chemistry for Windows, Chemical Reactions and Equilibrium Software with Extensive Thermochemical Database, www.chemistry-software.com, acc. July 1, 2019.

  21. A. James and M. Lord, Macmillan’s Chemical and Physical Data, London (1992).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Fedotov.

Additional information

Translated from Atomnaya Énergiya, Vol. 132, No. 4, pp. 225–231, April, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedotov, A.V., Mikheev, E.N., Missorin, D.S. et al. E110-Type Zirconium Alloys – Dilatometric Determination of Solidus and Liquidus Temperatures. At Energy 132, 238–244 (2022). https://doi.org/10.1007/s10512-023-00934-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10512-023-00934-3

Navigation