Skip to main content
Log in

Separative Cascade Shape Effect on the Isotopic Mixture Concentration in Cascade Holdup

  • Published:
Atomic Energy Aims and scope

Numerical studies are performed of the separation of a model multi-component isotopic mixture in a three-stream cascade. The particulars of isotope accumulation as a function of cascade shape (length, stage distribution of interstage flow) are examined. The regularities of the effect of the cascade shape on the component concentration in the cascade holdup are determined. An enriched isotopic mixture can be obtained by accumulation and partial removal of the process gas from the stages where the target component concentration is highest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. M. Skorynin, I. I. Pulnikov, G. A. Sharin, and S. M. Zyryanov, “Obtaining a pilot batch of pure silicon tetrafl uoride highly enriched in the isotope silicon-28 in a cascade of gas centrifuges,” Izv. Tomsk. Polytekhn. Univ., 307, No. 7, 88–90 (2004).

    Google Scholar 

  2. N. V. Abrosimov, D. G. Aref,ev, P. Becker, et al., “A new generation of 99.999% enriched 28Si single crystals for the determination of Avogadro’s constant,” Metrologia, 54, 599–609 (2017).

    Article  ADS  Google Scholar 

  3. S. Zeng and C. Ying, “A method of separating a middle component in multicomponent isotope mixtures by gas centrifuge cascades,” Separ. Sci. Technol., 35, No. 14,. 2173–2186 (2000).

    Article  Google Scholar 

  4. A. Yu. Smirnov and G. A. Sulaberidze, “Comparison of methods for enrichment of intermediate components in cascades with the same number of separating elements,” At. Energ, 117, No. 5, 274–279 (2015); Atomic Energy, 117, No. 5, 340–346 (2015).

  5. L.Yu. Sosnin, I. A. Suvorov, A. N. Tcheltsov, and B. I. Rogozev, “Production of 63Ni of high specifi c activity,” Nucl. Instrum. Meth. Phys. Res., 334, 43–44 (1993).

    Article  ADS  Google Scholar 

  6. A. A. Orlov, A. A. Ushakov, and V. P. Sovach, “Changing the external flows of the separation stage to reduce the duration of the transient,” At. Energ., 126, No. 5, 260–264 (2019); Atomic Energy, 126, No. 5, 294–299 (2019).

  7. A. A. Orlov, A. A. Ushakov, and V. P. Sovach, “Nonstationary transfer of isotopic mixture components as a result of changes in the cascade fluxes,” Inzh. Fiz. Zh., 92, No. 4, 881–888 (2019); J. Eng. Phys. Thermophys., 92, No. 4, 853–860 (2020).

  8. G. A. Sulaberidze, D. V. Potapov, V. D. Borisevich, and Q. Xie, “Special features of the enrichment of components with intermediate mass in a quasi-ideal cascade,”At. Energ., 100, No. 1, 51–56 (2006); Atomic Energy, 100, No. 1, 53–59 (2006).

  9. G. A. Sulaberidze, V. D. Borisevich, and Q. Xie, “Comparison of optimal and model cascades for the separation of multicomponent mixtures at arbitrary stage enrichments,” Teor. Osn. Khim. Tekhnol., 42, No. 4, 361–367 (2008); Theor. Found. Chem. Eng., 42, No. 4, 347–353 (2008).

  10. V. D. Borisevich, G. A. Sulaberidze, and S. Zeng, “New approach to optimize Q-cascades,” Chem. Eng. Sci., 66, 393–396 (2011).

    Article  Google Scholar 

  11. D. N. Fomin, A. Yu. Smirnov, G. A. Sulaberidze, and A. R. Mustafin, “Cascades with flow expansion for simultaneous concentration of intermediate components,” At Energ., 126, No. 5, 264–268 (2019); Atomic Energy, 126, No. 5, 300–304 (2019).

  12. V. A. Palkin, “Optimal multistream cascades for simultaneous production of high-enrichment intermediate components,” At. Energ., 127, No. 5, 269–274 (2019); Atomic Energy, 127, No. 5, 296–302 (2020).

  13. I. A. Suvorov, A. N. Tcheltsov, L. Yu. Sosnin, and A. A. Sazikin, “Centrifugal extraction of highly enriched tin isotopes and increase of specific activity of the radionuclide 119mSn on the gas centrifuge cascade,” Nucl. Instrum. Meth. Phys. Res. A, 480, 22–28 (2002).

    Article  ADS  Google Scholar 

  14. L. Yu. Sosnin, A. N. Tcheltsov, A. P. Kuchelev, and G. V. Remin, “Centrifugal extraction of highly enriched 120Te and 122Te using the non-steady state method of separation,” ibid., 36–39.

  15. X. Quanxin, W. Liming, and L. Zengguang, “Transient characteristics of intermediate components in a cascade for separation of multicomponent isotope mixtures,” Perspekt. Mater., No. 10, 25–28 (2010).

    Google Scholar 

  16. A. Yu. Smirnov and G. A. Sulaberidze, “Features of mass transfer of intermediate components in square gas centrifuge cascade for separating multicomponent mixtures,” Teor. Osn. Khim. Tekhnol., 48, No. 5, 572–579 (2014); Theor. Found. Chem. Eng., 48, No. 5, 629–636 (2014).

  17. R. Hooke and T. A. Jeeves, “Direct search solution of numerical and statistical problems,” Assoc. Comp. Machin., No. 8, 212–229 (1961).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Ushakov.

Additional information

Translated from Atomnaya Énergiya, Vol. 128, No. 6, pp. 322–328, June, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ushakov, A.A., Orlov, A.A. Separative Cascade Shape Effect on the Isotopic Mixture Concentration in Cascade Holdup. At Energy 128, 349–355 (2020). https://doi.org/10.1007/s10512-020-00699-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10512-020-00699-z

Navigation