Atomic Energy

, Volume 125, Issue 5, pp 338–344 | Cite as

Calculation of the Dose Distribution Near the Gantry of a Radiotherapy System

  • T. V. Bondarenko
  • S. A. Polikhov
  • V. P. Smirnov
  • A. S. Kurilik
  • L. Yu. Ovchinnikova

Data on the radiation loads of a radiotherapy system developed at NIITFA are presented. The main problems of the calculations are to establish the region in the mobile part of the system that is best suited for arrangement of blocks with electronics and to calculate the parameters of local radiation shielding that ensures fault-free operation of the electronics for the life of the system. The calculations were performed by the Monte Carlo method using the FLUKA software package.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. N. Ermakov, A. S. Alimov, L. Yu. Ovchinnikova, et al., “Linacs for industry, cargo inspection and medicine designed by Moscow University,” in: 29th Linear Accelerator Conf. LINAC18, MOPO060, Beijing, China,
  2. 2.
    J. Schwank, “Basic mechanisms of radiation effects in the natural space environment,” in: Nuclear and Space Radiation Effects Conf. NSREC’94, Conf-940726-12, USA (1994).Google Scholar
  3. 3.
    J. Srour, “Review of displacement damage effects in silicon devices,” IEEE Trans. Nucl. Sci., 50, No. 3, 653–670 (2003).ADSCrossRefGoogle Scholar
  4. 4.
    F. McLean and T. Oldham, Basic Mechanisms of Radiation Effects in Electronic Materials and Devices, HDLTR2129 (1987).Google Scholar
  5. 5.
    T. Ma and P. Dressendorfer, Ionizing Radiation Effects in MOS Devices and Circuits, Wiley-Interscience, NY (1989).Google Scholar
  6. 6.
    A. G. Petrov, “Dose effects of reversible losses of information in flash-memory cells,” in: Radiation Resistance of Electronic Systems Stoikost-2013, pp. 161–162.Google Scholar
  7. 7.
    I. Fetahovic, M. Pejovic, and M. Vujisic, “Radiation damage in electronic memory devices,” Int. J. Photoenergy, Art. ID 170269 (2013).Google Scholar
  8. 8.
    J. Lauenstein, A. Toper, C. Megan, et al., “Recent radiation test results for power MOSFETs,” in: 2013 IEEE Radiation Effects Data Workshop REDW’13, USA (2013), pp. 183–188.Google Scholar
  9. 9.
    T. Böhlen, F. Cerutti, M. Chin, et al., “The FLUKA code: developments and challenges for high energy and medical applications,” in: Nucl. Data Sheets, 120, 211–214 (2014).Google Scholar
  10. 10.
    A. Ferrari, P. Sala, A. Fasso, and J. Ranft, FLUKA: a MultiParticle Transport Code, CERN, Geneva (2005).CrossRefGoogle Scholar
  11. 11.
    S. Agostinelli, J. Allison, K. Amako, et al., “GEANT4: а simulation toolkit,” Nucl. Instrum. Meth. A, 506, No. 3, 250–303 (2003).ADSCrossRefGoogle Scholar
  12. 12.
    L. Yu. Ovchinnikova and V. I. Shvedunov, “Design of C-band electron linear accelerator for a complex of radiation therapy,” in: 29th Linear Accelerator Conf. LINAC18, TUPO097, Beijing, China,
  13. 13.
    D. S. Yurov, L. Yu. Ovchinnikova, A. S. Alimov, et al., “Beam parameters measurement of C-band 6 MeV linear electron accelerator,” ibid., MOPO061, Beijing, China,

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • T. V. Bondarenko
    • 1
  • S. A. Polikhov
    • 1
  • V. P. Smirnov
    • 1
  • A. S. Kurilik
    • 2
  • L. Yu. Ovchinnikova
    • 2
  1. 1.Research Institute of Technical Physics and Automation (NIITFA)MoscowRussia
  2. 2.Research Institute of Nuclear Physics (NIIYaF MGU) and Laboratory of Electron Accelerators (LEU MGU)Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations