Advertisement

Atomic Energy

, Volume 125, Issue 4, pp 257–261 | Cite as

Composite Binders for Solidification of Spent Ion-Exchange Resins

  • O. A. KononenkoEmail author
  • V. V. Milyutin
  • N. A. Nekrasova
Article
  • 11 Downloads

New cement compositions for solidifying mixtures of spent ion-exchange resins in sodium, nitrate, and tetraboric-acid form were developed. Depending on the composition of the cement and the ionic form of the anionite, the proposed cements make it possible to incorporate into the matrix 22–83 wt.% more ionexchange resins compared with using conventional portland cement. The matrices with heightened content of ion-exchange resins meet the requirements of cemented radioactive waste in terms of strength, water resistance, and leaching of 137Cs.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Handling and Processing of Radioactive Waste from Nuclear Applications, Techn. Rep. Ser. No. 402, IAEA, Vienna (2001).Google Scholar
  2. 2.
    O. A. Kononenko, A. D. Aliyev, Yu. S. Pavlov, et al., “Synthesis of portland cement matrices with heightened filling of spent ion-exchange resins,” Vopr. Rad. Bezopasn., No. 4, 51–60 (2017).Google Scholar
  3. 3.
    V. N. Epimakhov and M. S. Oleinik, “Inclusion of radioactive ion-exchange resins in inorganic binders,” At. Energ., 99, No. 3, 171–177 (2005).CrossRefGoogle Scholar
  4. 4.
    P. V. Kozlov and O. A. Gorbunova, Cementing Low and Medium Level Waste, Ozersk–Moscow (2011).Google Scholar
  5. 5.
    Q. Zhou, N. Milestone, and M. Hayes, “An alternative to portland cement for waste encapsulation – the calcium sulfoaluminate cement system, “ J. Hazard. Mater., 136, No. 1, 120–129 (2006).CrossRefGoogle Scholar
  6. 6.
    L. Junfeng and W. Jianlong, “Cementation of radioactive waste resin by calcium sulfoaluminate cement,” in: 17th Int. Conf. on Nuclear Engineering, Brussels, July 12–16, 2009, Vol. 5, pp. 47–51.Google Scholar
  7. 7.
    O. A. Kononenko, A. D. Aliyev, and Yu. S. Pavlov, et al., “Immobilization of NPP bottoms in aluminate and hypoaluminate matrices,” Vopr. Rad. Bezopasn., No. 4, 27–37 (2016).Google Scholar
  8. 8.
    O. A. Kononenko, V. M. Gelis, and V. V. Milutin, “Inclusion of NPP bottoms in matrices based on portland cement and silica additives,” At. Energ., 109, No. 4, 222–227 (2010).Google Scholar
  9. 9.
    O. A. Kononenko, V. M. Gelis, V. V. Milutin, et al, “Solidifi cation of liquid radioactive waste arising in oxidative dissolution of sulfonic cation exchangers,” Vopr. Rad. Bezopasn., No. 4, 3–9 (2015).Google Scholar
  10. 10.
    O. A. Kononenko, A. D. Aliyev, Yu. S. Pavlov, et al., “Study of the possibility of incorporating high-salt liquid-radioactive waste into matrices based on nanoscale silica and zeolites,” Vopr. Rad. Bezopasn., No. 4, 3–10 (2014).Google Scholar
  11. 11.
    Grout Mixes for Wells with Anomalous Formation Pressures, Nedra, Moscow (1977).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • O. A. Kononenko
    • 1
    Email author
  • V. V. Milyutin
    • 1
  • N. A. Nekrasova
    • 1
  1. 1.Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences (IPCE RAS)MoscowRussia

Personalised recommendations