Advertisement

Atomic Energy

, Volume 125, Issue 4, pp 239–243 | Cite as

Allowing for the Stochastic Nature of Corrosion Damage in Marine-Based Objects Including Submerged Radiation-Hazardous Objects

  • A. A. Sarkisov
  • S. V. Antipov
  • V. P. Bilashenko
  • V. E. Kalantarov
  • M. N. Kobrinskii
  • D. O. Smolentsev
  • V. A. Sotnikov
  • P. A. Shvedov
Article
  • 10 Downloads

A mathematical model of corrosion damage to the protective barriers of radiation hazardous marine-based objects, taking account of the stochastic nature of this process, is constructed. The rate of pitting corrosion is determined by many mutually independent factors containing random components. This makes it possible to model pitting corrosion as a random walk process in which the corrosion rate changes discreetly and remains constant for one computational time step. The Monte Carlo method is used to calculate the depressurization time of an object with one protective barrier. The obtained estimates agree with expeditionary observations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. A. Sarkisov, V. A. Sotnikov, S. V. Antipov, et al., “A mathematical model for evaluating the technical state and predicting the breakdown of the protective barriers of submerged radiation hazardous objects,” At. Energ., 124, No. 2, 99–104 (2018).CrossRefGoogle Scholar
  2. 2.
    V. N. Rozhnov, The Influence of Structural Factors on Stress Corrosion Cracking of Thin-Walled Pipes Made of Zirconium Alloys: Candid. Dissert. in Techn. Sci., MISiS, Moscow (2004).Google Scholar
  3. 3.
    A. A. Gerasimenko (ed.), Protection Against Corrosion, Aging, and Biodeterioration of Machinery, Equipment, and Structures, Mashinostroenie, Moscow (1987), Vol. 1.Google Scholar
  4. 4.
    I. I. Ashcheulova, Corrosion-Electrochemical Behavior of Iron-Chromium-Silicon Stainless Ferritic Alloys: Candid. Dissert. in Techn. Sci., NIFKhI, Moscow (2010).Google Scholar
  5. 5.
    A. Malic, N. Siddiqi, S. Ahmad, and I. Andijani, “The effect of dominant alloy additions on the corrosion behaviour of some conventional and high-alloy stainless steels in seawater,” Cor. Sci., 37, No. 10, 1521–1535 (1995).CrossRefGoogle Scholar
  6. 6.
    O. Yu. Artamonov, Correlation of Corrosion-Electrochemical Behavior and Donor-Acceptor Surface Properties of Carbon and Low-Alloy Steels: Candid. Dissert. in Techn. Sci., MGUIE, Moscow (2011).Google Scholar
  7. 7.
    K. A. Chandler, Corrosion of Ships and Marine Structures [Russian translation], Sudostroenie, Leningrad (1988).Google Scholar
  8. 8.
    N. P. Zhuk, Course on the Theory of Corrosion and Protection of Metals, TID Alyance, Moscow (2006).Google Scholar
  9. 9.
    E. S. Wentzel, Probability Theory, Nauka, Moscow (1969), 4th ed.Google Scholar
  10. 10.
    A. A. Sarkisov, Yu. V. Sivintsev, V. L. Vysotskii, and V. S. Nikitin, Atomic Legacy of the Cold War at the Bottom of the Arctic: Radioecological and Technical-Economic Problems of Radiation Rehabilitation of the Seas, IBRAE RAN, Moscow (2015).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. A. Sarkisov
    • 1
  • S. V. Antipov
    • 1
  • V. P. Bilashenko
    • 1
  • V. E. Kalantarov
    • 1
  • M. N. Kobrinskii
    • 1
  • D. O. Smolentsev
    • 1
  • V. A. Sotnikov
    • 1
  • P. A. Shvedov
    • 1
  1. 1.Nuclear Safety Institute, Russian Academy of Sciences (IBRAE RAN)MoscowRussia

Personalised recommendations