Atomic Energy

, Volume 124, Issue 5, pp 349–354 | Cite as

Spectral Methods of Remote-Sensing Monitoring of Radioactive Substances and Toxic Chemicals

  • Sh. Sh. Nabiev
  • L. A. Palkina

The physical principles of passive and active methods of remote-sensing monitoring of radioactive substances and toxic chemicals in accidental emissions (leaks) at nuclear fuel cycle objects are examined. The analytical possibilities of the most sensitive methods of remote-sensing monitoring, which are based on the advances made in UV and microwave range radiometry, laser IR-absorption spectroscopy, laser-induced fluorescence, and laser spark emission spectrometry, are discussed. The prospects for the development of spectral methods of remote-sensing monitoring in different ranges are analyzed.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Rees, Physical Principles of Remote Sensing, Cambridge Univ. Press, Cambridge (2012).CrossRefGoogle Scholar
  2. 2.
    A. Wright and C. Winkler, Active Nitrogen: Physical Chemistry, Academic Press, New York (2013).Google Scholar
  3. 3.
    Y. Tohyama and T. Nagata, “Absolute and relative measurements of optical emission cross sections for the \( {\mathrm{N}}_2^{+} \) 1N(ν′, ν″) bands by electron impact,” J. Phys. Soc. Jpn., 80, No. 3, 034304(1–8) (2011).ADSCrossRefGoogle Scholar
  4. 4.
    G. A. Kolotkov, S. T. Penin, and L. K. Chistyakova, “Possibility of determining the activity of NPP emissions according to the microwave radiation as 1420 MHz,” Opt. Atmos. Okeana, 19, No. 9, 793–797 (2006).Google Scholar
  5. 5.
    G. A. Kolotkov and S. T. Penin, “Calculation of the radiation intensity at the frequencies 1420 and 1665–1667 MHz from the plume of standard radioactive emissions from a radiochemical plant,” Opt. Atmos. Okeana, 27, No. 2, 164–166 (2014).CrossRefGoogle Scholar
  6. 6.
    G. Yu. Grigoriev, S. L. Malyugin, Sh. Sh. Nabiev, et al., “Remote detection of HF molecules in open atmosphere with the use of tunable diode lasers,” Appl. Phys. В. Lasers Optics, 101, No. 3, 683–688 (2010).ADSCrossRefGoogle Scholar
  7. 7.
    G. Yu. Grigor’ev, S. L. Malyugin, Sh. Sh. Nabiev, et al., “On the possibility of using laser-spectral methods for monitoring the emissions of dangerous substances at NFC objects,” At. Energ., 105, No. 4, 217–225 (2008).CrossRefGoogle Scholar
  8. 8.
    S. V. Kireev, S. L. Shnyrev, and S. V. Suganeev, “Remote monitoring of 129I and 127I isotopes in the atmosphere using the laser-induced fluorescence method,” Laser Phys., 26, No. 9, 095604(1–4) (2016).ADSCrossRefGoogle Scholar
  9. 9.
    S. Musazzi and U. Perini, Laser-Induced Breakdown Spectroscopy, Springer-Verlag, Berlin (2014).CrossRefGoogle Scholar
  10. 10.
    A. Pailloux and C. Gallou, “Laser induced breakdown spectroscopy: a candidate tool for field analysis,” in: Abstr. Techn. Meeting on Application of Laser Spectrometry in IAEA Safeguards, IAEA, Vienna (2006), pр. 14–15.Google Scholar
  11. 11.
    L. K. Chistyakova, “Remote-sensing methods detecting radioactive anomalies in the atmosphere at the ground,” Opt. Atmos. Okeana, 14, No. 5, 352–358 (2001).MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Sh. Sh. Nabiev
    • 1
  • L. A. Palkina
    • 1
  1. 1.National Research Center Kurchatov InstituteMoscowRussia

Personalised recommendations