Skip to main content
Log in

Nuclear Problems of Thermonuclear Power Generation

  • Published:
Atomic Energy Aims and scope

The current status of the nuclear problems of the thermonuclear fusion research program and, in particular, tritium, is discussed. It is noted that thermonuclear power generation without a uranium or thorium blanket is problematic; the key nuclear problems of the fusion–fission hybrid system remain unsolved. It is proposed that an integrated strategic analysis be made of the thermonuclear research program and the realistic possibilities of its application in nuclear power-engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Vernadskii, “Current problems of the field of radium,” in: Essays and Speechesi, Petrograd (1922), pp. 31–43.

  2. G. Gamov, My World Line: Informal Autobiography, Fizmatgiz, Moscow (1994).

    Google Scholar 

  3. P. A. Molchanov, History of Scientific Research on Controlled Thermonuclear Fusion, www.docme.ru/download/178483, acc. Nov. 10, 2017.

  4. Plasma Physics and the Problem of Controlled Thermonuclear Reactions, Izd. Akad. Nauk SSSR, Moscow (1958), Vols. 1–3.

  5. “On the history of research on controlled thermonuclear fusion,” Usp. Fiz. Nauk, 171, No. 8, 877–908 (2001).

  6. A. S. Bishop, Project Sherwood: USA Program on Controlled Thermonuclear Fusion, Atomizdat, Moscow (1960).

    Google Scholar 

  7. R. Post, “Controlled fusion research – an application of the physics of high-temperature plasmas,” Rev. Mod. Phys., 28, No. 3, 338–362 (1956).

    Article  ADS  Google Scholar 

  8. M. M. Basko, Physical Foundations of Inertial Confinement Thermonuclear Fusion, ITEF, Moscow (2008).

    Google Scholar 

  9. B. B. Kadomtsev, “From MTR to ITER,” Usp. Fiz. Nauk, 166, No. 5, 449–458 (1996).

    Article  Google Scholar 

  10. R.-H. Rebut, “From JET to the reactor,” Plasma Phys. Contr. Fus., 48, B1– B13 (2006).

    Article  Google Scholar 

  11. R. Aymar, V. A. Chuyanov, Y. Huget, and Y. Shimomura, “Overview of ITER-FEAT. The International burning plasma experiment. ITER joint team and ITER home teams,” Nucl. Fus., 41, No. 10, 1301–1310 (2001).

    Article  ADS  Google Scholar 

  12. L. G. Golubchikov, ITER – Decisive Step, MIFI, Moscow (2004).

    Google Scholar 

  13. J. Weale, H. Goodfellow, M. McTaggart, and M. Mullender, “Measurements of the reaction rate distribution produced by a source of 14 MeV neutrons at the centre of uranium metal pile,” Reactor Sci. Technol., 14, 91–99 (1961).

    Google Scholar 

  14. I. N. Golovin, B. N. Kolbasov, V. V. Orlov, et al., The Nuclear Fuel Problem and Fusion–Fission Hybrid Reactor, TECDOC 145/25, IAEA, Vienna (1978).

    Google Scholar 

  15. E. P. Velikhov, V. A. Glukhikh, V. V. Gur’ev, et al., “Hybrid thermonuclear tokamak reactor for fissile-fuel and electricity production,” At. Energ., 45, No. 1, 3–9 (1978).

    Google Scholar 

  16. Yu. V. Petrov, “Muon catalysis for energy production by nuclear fusion,” Nature, 285, 466–468 (1980).

    Article  ADS  Google Scholar 

  17. R. Moir, “The fusion breeder,” J. Fus. Energy, 2, No. 4/5, 351–367 (1982).

    Article  Google Scholar 

  18. B. Leonard, Jr. , “A review of fusion – fission (hybrid) concepts,” Nucl. Technol., 20, 161–178 (1973).

    Article  Google Scholar 

  19. L. Lidsky, “Fusion–fission systems: hybrid, symbiotic, and augean,” Nucl. Fus., 15, 151–173 (1975).

    Article  ADS  Google Scholar 

  20. Proc. US–USSR Symposium on Fusion–Fission Reactors, CONF-760733, Lawrence Livermore Laboratory, July 13–16, 1976; Fusion–Fission, Proc. 2nd Soviet-American Seminar, March 14 – April 1, 1977, Atomizdat, Moscow (1978).

  21. H. Bethe, “The fusion hybrid,” Phys. Today, May, 44–51 (1979).

  22. W. Manheimer, “Back to the future: the historical, scientific, naval and environmental case for fission fusion,” Fus. Technol., 36, 1–15 (1999).

    Article  Google Scholar 

  23. Tritium from Power Plants Gives India an H-bomb Capability, www.ccnr.org/india_tritium.html, acc. Nov. 11, 2017.

  24. The Most Expensive Substances in the World, www.bugaga.ru/interesting/1146729791-samye-dorogie-veschestvav-mire.html, acc. Nov. 11, 2017.

  25. E. P. Velikhov, M. V. Koval’chuk, E. A. Azizov, et al., “Thermonuclear neutron source for nuclear fuel production,” At. Energ., 114, No. 3, 160–165 (2013).

    Article  Google Scholar 

  26. V. G. Vasil’kov, V. I. Gol’danskii, B. A. Pimenov, et al., “Neutron multiplication in uranium bombarded by 300–660 MeV protons,” At. Energ., 44, No. 4, 329–3335 (1978).

    Google Scholar 

  27. R. G. Vasil’kov, V. I. Gold’danskii, and V. V. Orlov, “On electric breeding,” Usp. Fiz. Nauk, 139, No. 3, 435–464 (1983).

    Article  Google Scholar 

  28. NRB-99/2209, Radiation Safety Standards, Append. 2, Moscow (2009), p. 52.

  29. D. Steiner and A. Fraas, “Preliminary observations on the radiological implications of fusion power,” Nucl. Saf., 13, No. 55, 353–365 (1972).

    Google Scholar 

  30. C. Alejaldre, “Safety approach on tritium related issues in ITER,” in: 9th Int. Conf. on Tritium Science and Technology TRITIUM 2010, Nara, Japan, Oct. 24–29, 2010.

  31. C. Forsberg, S. D. Carpenter, et al., “Tritium control and capture in salt-cooled fission and fusion reactors: status, challenges, and path forward,” Nucl. Technol., 197, 119–139 (2017).

    Article  Google Scholar 

  32. E. A. Azizov, G. G. Gladush, A. V. Lopatkin, et al., “Tokamak based hybrid systems for fuel production and spent nuclear fuel recycling,” At. Energ., 110, No. 2, 84–88 (2011).

    Article  Google Scholar 

  33. B. V. Kuteev and V. I. Khripunov, “Current view on hybrid thermal nuclear reactor,” Vopr. At. Nauki Tekhn. Ser. Termoyad. Sintez, No. 1, 3–40 (2009).

    Google Scholar 

  34. A. N. Shmelev, G. G. Kulikov, A. G. Kulikov, et al., “Controlled thermonuclear fusion: potential rule in combined (Th–U–Pu) nuclear fuel cycle,” Yad. Fiz. Inzhinir., 2, No. 2, 101–111 (2011).

    Google Scholar 

  35. A. N. Shmelev, E. F. Kryuchkov, G. G. Kulikov, and E. G. Kulikov, “Potential role of hybrid fusion-fission fuel producers in a closed (U–Pu) fuel cycle with thorium,” Yad. Fiz. Inzhinir., 4, No. 11–12, 1060–1071 (2013).

    Google Scholar 

  36. A. N. Shmelev, G. G. Kryuchkov, E. G. Kulikov, and V. A. Apse, On the Potential of Hybrid Fusion-Fission Fuel Producers for Nuclear Reactors, Klab Print, Moscow (2014).

    Google Scholar 

  37. E. A. Azizov, G. G. Gladush, and A. B. Mineev, Controlled Thermonuclear Fusion with Magnetic Confinement and Development of the Fusion-Fission Hybrid Reactor Based on Tokamak, Trovant, Moscow (2016).

    Google Scholar 

  38. K. Shibata, O. Iwamoto, T. Nakagawa, et al., “JENDL-4.0: a new library for nuclear science and engineering,” Nucl. Sci. Technol., 48, No. 1, 1–30 (2011).

    Article  Google Scholar 

  39. S. V. Marin, V. V. Orlov, and G. E. Shatalov, “Formation of plutonium Isotopes in uranium fuel of a hybrid thermonuclear reactor,” At. Energ., 52, No. 5, 301–304 (1982).

    Article  Google Scholar 

  40. V. M. Murogov, M. F. Troinov, and A. N. Shmelev, Use of Thorium in Nuclear Reactors, Energoatomizdat, Moscow (1983).

    Google Scholar 

  41. E. P. Velikhov, E. A. Azizov, P. I. Alekseev, et al., “Green nuclear power concept,” Vopr. At. Nauki Tekhn. Ser. Termoyad. Sintez, 36, No. 1, 5–16 (2013).

    Google Scholar 

  42. V. M. Novikov, V. N. Prusakov, V. L. Blinkin, and D. Yu. Chuvilin, “Molten salt blankets of a thermonuclear reactor: advantages and problems,” Vopr. At. Nauki Tekhn. Ser. Termoyad. Sintez, No. 4, 19–23 (1985).

    Google Scholar 

  43. Accelerator-Driven Systems (ADS) and Fast Reactors (FR) in Advanced Nuclear Fuel Cycles. A Сomparative Study, OECD (2002).

  44. C. Forsberg, Thermal- and Fast-Spectrum Molten-Salt Reactors for Actinide Burning and Fuel Production (2017), http://nuclear/inl.gov/deliverables/docs/msr_deliverable_doe-global_07_paper.pdf.

  45. V. Ignatiev, O. Feinberg, A. Gnidoy, et al., “Molten salt actinide recycler and transforming system without and Th–U support: fuel cycle flexibility and key material properties,” Ann. Nucl. Energy, 64, 408–420 (2014).

    Article  Google Scholar 

  46. A. M. Degtyarev, O. E. Kolyaskin, A. A. Myasnikov, et al., “Molten-salt subcritical reactor for incinerating transplutonium actinides,” At. Energ., 114, No. 4, 183–188 (2013).

    Article  Google Scholar 

  47. A. M. Degtyarev, A. A. Myasnikov, and L. I. Ponomarev, “Molten salt fast reactor with U–Pu fuel cycle,” Prog. Nucl. Energy, 82, 33–37 (2015).

    Article  Google Scholar 

  48. Yu. Chengang, Li Xiaoxiao, Cai Xiangzhau, et al., “Minor actinide incineration and Th–U breeding in a small FLiNaK molten-salt reactor,” Ann. Nucl. Energy, 99, 335–344 (2017).

    Article  Google Scholar 

  49. S. V. Marin and G. E. Shatalov, “Isotopic composition of fuel in the blanket of a hybrid thermonuclear reactor with a thorium cycle,” At. Energ., 56, No. 5, 289–291 (1984).

    Google Scholar 

  50. Yu. G. Bobkov, V. G. Ilyunin, V. M. Murogov, et al., “Computational studies of the accumulation of 232U, 236Pu, and 238Pu in the breeding zones of hybrid and fast reactors,” At. Energ., 48, No. 6, 395–396 (1980).

    Article  Google Scholar 

  51. P. Stambauch, V. Chan, R. Muller, and M. Schaffer, “The special tokamak route to fusion power,” Fus. Technol., 33, No. 1, 1–21 (1998).

    Article  Google Scholar 

  52. M. P. Gryaznevich, A. Sykes, D. Kingham, et al., “Options for a steady-state compact fusion neutron source,” Fus. Sci. Technol., 61, 89–94 (2012).

    Article  Google Scholar 

  53. J. Menard, T. Brown, L. El-Guebaly, et al., “Fusion nuclear science facilities and pilot plants based on the spherical tokamak,” Nucl. Fus., 56, 1–43 (2016).

    Article  Google Scholar 

  54. I. N. Golovin and B. B. Kadomtsev, “State and prospects for control thermonuclear fusion,” At. Energ., 81, No. 5, 364–372 (1996).

    Article  Google Scholar 

  55. M. Greenwald, J. Terry, S. Wolfe, et al., “A new look at density limits in tokamaks,” Nucl. Fus., 28, No. 12, 2199–2207 (1988).

    Article  Google Scholar 

  56. W. Greenwald, “Density limits in toroidal plasmas,” Plasma Phis. Contr. Fus., 44, No. 8, R27–R53 (2002).

    Article  ADS  Google Scholar 

  57. H. Iida, V. Khripunov, E. Petrizzi, et al., ITER Nuclear Analysis Report, NAG-201-01-06-17-FDR (2001).

  58. J. Knaster, F. Arbiter, P. Cara, et al., “IFMIF, the European-Japanese efforts under the broader approach agreement towards a Li(d, xn) neutron source: current status and future options,” Nucl. Mater. Energy, 9, 4654 (2016).

    Google Scholar 

  59. M. Saito, V. Apse, V. Artisyuk, and A. Chmelev, “Fusion driven transmutation of fission product cesium in its elemental form,” J. Nucl. Sci. Technol., 37, 1024–1031 (2000).

    Article  Google Scholar 

  60. V. I. Subbotin, G. V. Dolgoleva, A. V. Zabrodin, et al., “High-energy facility for heavy-ion DT fusion with targets containing fissile materials,”At. Energ., 99, No. 3, 190–198 (2005).

    Article  Google Scholar 

  61. V. I. Il’gisonis, Classical Problems of Hot Plasma Physics, Izd. Dom MEI, Moscow (2015).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Atomnaya Énergetika, Vol. 124, No. 2, pp. 105–113, February, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orlov, V.V., Ponomarev, L.I. Nuclear Problems of Thermonuclear Power Generation. At Energy 124, 129–138 (2018). https://doi.org/10.1007/s10512-018-0386-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10512-018-0386-5

Navigation