Skip to main content
Log in

Mechanism and Conditions for Continuous Hydride Layer Formation in Zirconium Cladding

  • Published:
Atomic Energy Aims and scope

Local hydrogenation of zirconium fuel-element cladding, resulting in the formation of continuous hydrides, as a rule occurs when coolant or other hydrogen-containing compound finds its way beneath the fuel-element cladding irradiated in the core of a water moderated and cooled reactor. In this article, the set of processes occurring during hydrogenation of zirconium cladding is analyzed, and estimates are given for the parameters of these processes. The conditions and mechanism of formation of a continuous hydride over the thickness of zirconium cladding are established. It is shown that the duration of the nucleation of the hydride is determined primarily by the time to local destruction of the oxide film on the inner surface of the zirconium cladding of the fuel elements. The shortest possible time for continuous hydride to grow through the thickness of fuel-element cladding is determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Waterside Corrosion of Zirconium Alloys in Nuclear Power Plants, IAEA-TECDOC-996, IAEA, Vienna (1998).

  2. A. Couet, A. Motta, and R. Comstock, “Hydrogen pickup measurements in zirconium alloys: Relation to oxidation kinetics,” J. Nucl. Mater., 451, 1–13 (2014).

    Article  ADS  Google Scholar 

  3. A. A. Shamkov, B. A. Kalin, V. M. Anan’yan, et al., “Plymouth solubility of hydrogen and zirconium alloys,” Vopr. At. Nauki Tekhn. Ser. Materialoved. Nov. Mater., No. 1(66), 366–370 (2006).

  4. I. G. Lesina, V. B. Ivanov, and Ya. V. Sergeecheva, “Investigation of the interaction of hydrogen isotopes with the zirconium alloys E-110 and E-665 by radio luminography,” in: Abstr. All-Russ. Sci.-Techn. Conf. MAYAT-2014, Moscow (2014), pp. 34–35.

  5. E. Yu. Afanas’eva, I. A. Evdokimov, V. V. Likhanskii, et al., “Modeling of hydride destruction of fuel elements in water cooled reactors,” At. Energ., 95, No. 4, 275–283 (2003).

    Google Scholar 

  6. Review of Fuel Failures in Water Cooled Reactor, No. NFT-2.1, IAEA Vienna (2010).

  7. M. Yamamoto, S. Naito, M. Mabuchi, and T. Hashino, “Adsorption potential of hydrogen atom on zirconium,” J. Phys. Chem., 96, 3409–3412 (1992).

    Article  Google Scholar 

  8. M. Yamamoto, S. Naito, M. Mabuchi, and T. Hashino, “Kinetics of oxygen adsorption by alpha-zirconium,” J. Phys. Chem., 93, 5203–5209 (1989).

    Article  Google Scholar 

  9. A. Sawatzky, “The diffusion and solubility of hydrogen in the alpha phase of Zircaloy-2,” J. Nucl. Mater., 2, No. 1, 62–68 (1960).

    Article  ADS  Google Scholar 

  10. M. Mallett and W. Albretcht, “Low-pressure solubility and diffusion of hydrogen in zirconium,” J. Electrochem. Soc., 104, No. 3, 142–146 (1957).

    Article  Google Scholar 

  11. J. Kearns, “Diffusion coefficient of hydrogen in alpha zirconium Zircaloy-2 and Zircaloy-4,” J. Nucl. Mater., 43, 330–338 (1972).

    Article  ADS  Google Scholar 

  12. E. Zuzek, “On equilibrium in the Zr–H system,” Surf. Coat. Technol., 28, No. 3–4, 323–338 (1986).

    Article  Google Scholar 

  13. G. Majer, W. Renz, and R. Barnes, “The mechanism of hydrogen diffusion in zirconium dihydrides,” J. Phys., 6, 2935–2942 (1994).

    Google Scholar 

  14. E. Zuzek and J. Abriata, “The H–Zr (hydrogen-zirconium) system,” Bul. Alloy Phase Diag., 11, No. 4, 385–395 (1990).

    Article  Google Scholar 

  15. D. Khatamian and W. Manchester, “An ion beam study of hydrogen diffusion in oxides of Zr and Zr–Nb (2.5 wt%). I. Diffusion parameters for dense oxide,” J. Nucl. Mater., 166, 300–306 (1989).

    Article  ADS  Google Scholar 

  16. D. Khatamian, “Hydrogen diffusion in oxides formed on surfaces of zirconium alloys,” J. Alloys Comp., 253–254, 471–474 (1997).

    Article  Google Scholar 

  17. D. Khatamian, “Diffusion of hydrogen in single crystals of monoclinic ZrO2 and yttrium stabilized cubic zirconia,” Defect Diff. For., 297–301, 631–640 (2010).

  18. B. Lim, H. Hong, and K. Lee, “A study on the effects of dissolved hydrogen on zirconium alloys corrosion,” J. Nucl. Mater., 444, 349–355 (2014).

    Article  ADS  Google Scholar 

  19. A. A. Shmakov, E. A. Smirnov, and Kh. Brukhertzoifer, “Distribution and diffuion of hydrogen in oxidized alloys based on zirconium,” At. Energ., 85, No. 3, 253–255 (1998).

    Article  Google Scholar 

  20. J. Austin, T. Elleman, and K. Verghese, “Tritium diffusion in zircaloy-2 in the temperature range –78 to 204°C,” J. Nucl. Mater., 51, 321–329 (1974).

    Article  ADS  Google Scholar 

  21. Y. Hatano, R. Hitaka, M. Sugisaki, and M. Hayashi, “Transport mechanism of hydrogen through oxide fi lm formed on Zircaloy-4,” J. Rad. Nucl. Chem., 239, No. 3, 445–448 (1999).

    Article  Google Scholar 

  22. W. Kunz, H. Münzel, and U. Kunz, “Tritium release from Zircaloy-2: Dependence on temperature, surface conditions and composition of surrounding medium,” J. Nucl. Mater., 136, 6–15 (1985).

    Article  ADS  Google Scholar 

  23. I. Takagi, K. Une, S. Miyamura, and T. Kobayashi, “Deuterium diffusion in steam-corroded oxide layer of zirconium alloys,” J. Nucl. Mater., 419, 339–346 (2011).

    Article  ADS  Google Scholar 

  24. N. McIntyre, R. Davidson, C. Weisener, et al., “SIMS studies of hydrogen diffusion through oxides on Zr–Nb alloy,” Surf. Interf. Anal., 17, 757–763 (1991).

    Article  Google Scholar 

  25. V. A. Markelov, Improvements of the Composition and Structure of Zirconium Alloys in Order to Ensure the Serviceability of Fuel Elements, Fuel Assemblies, and Pressure Piping in the Cores of Water Cooled Reactors with Extended Service Life and Increased Fuel Burnup: Auth. Abstr. Dissert. Doct. Techn. Sci., Moscow (2010).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Atomnaya Énergiya, Vol. 123, No. 6, pp. 321–329, December, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novikov, V.V., Khomyakov, O.V. & Devyatko, Y.N. Mechanism and Conditions for Continuous Hydride Layer Formation in Zirconium Cladding. At Energy 123, 389–398 (2018). https://doi.org/10.1007/s10512-018-0358-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10512-018-0358-9

Navigation