Advertisement

Atomic Energy

, Volume 123, Issue 1, pp 17–24 | Cite as

Core Conversion of VVR-K Research Reactors

  • F. M. Arinkin
  • A. A. Shaimerdenov
  • Sh. Kh. Gizatulin
  • D. S. Dyusambaev
  • S. N. Koltochnik
  • P. V. Chakrov
  • L. V. Chekushina
Article
  • 30 Downloads

The conversion of the VVR-K research reactor to low-enrichment uranium fuel includes switching to a compact core with low-enrichment uranium and gradually transitioning from a light-water side reflector to a beryllium reflector with restoration of the working reactivity margin without makeup with fresh fuel. In 2015, the reactor was stopped in order to modernize the main elements of the core, the control and protection system for the channels of the working rods, and the emergency electric power source. First criticality of VVR-K with low-enrichment fuel followed by first start of the reactor occurred in spring 2016. The VVR-KN type FA specially developed for VVR-K make it possible to not only preserve but also improve the neutronphysical characteristics of the core. The design-basis reactivity margin of the working core load ~7%Δk/k is adequate for reactor operation for three 20-day cycles with ~10% average burnup reached in the central FA. The beryllium reflector is built up in stages starting at the fourth cycle. The beryllium reflector will make it possible to preserve the radial dimensions of the core and increase the neutron flux density in the central and peripheral irradiation channels.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Arinkin, Sh. Gizatulin, Zh. Sh. Zhotabaev, et al., “Feasibility study of the WWR-K reactor,” Proc. Int. Meeting on Reduced Enrichment for Research and Test Reactors, RERTR-2004, Vienna, Austria (2004), p. 5.Google Scholar
  2. 2.
    F. Arinkin, P. Chakrov, L. Chekushina, et al., “Feasibility analysis for conversion of the WWR-K reactor using an eight-tube uranium dioxide fuel assembly,” Proc. RERTR-2005 Meeting, Boston, USA (2005), p. 117.Google Scholar
  3. 3.
    F. Arinkin, P. Chakrov, L. Chekushina, et al., “Comparative study of the WWR-K reactor using low-enriched U–Mo fuel pin- and tube-type,” ibid., p. 122.Google Scholar
  4. 4.
    F. Arinkin, P. Chakrov, L. Chekushina, et al., “Characteristic of the WWR-K reactor core with low-enriched uranium dioxide fuel,” ibid., Cape Town, South Africa (2006), p. 47.Google Scholar
  5. 5.
    F. Arinkin, P. Chakrov, L. Chekushina, et al., “Calculation studies to substantiate trial of pilot low-enriched FAs in the WWR-K reactor,” ibid., p. 13.Google Scholar
  6. 6.
    F. M. Arinkin, Sh. Kh. Gizatulin, S. N. Koltochnik, et al., “Changing the core configuration of the VVR-K research reactor in order to increase the energy intensiveness of experimental fuel assemblies in resource tests,” Izv. Vyssh. Uchebn. Zaved. Ser. Tekhn. Tekhnol. Energet., 58, No. 2/2, 184–190 (2015).Google Scholar
  7. 7.
    F. M. Arinkin, P. V. Charkov, L. V. Chekushina, et al., “Test results for experimental FA in the VVR-K reactor core,” Izv. Tomsk. Politekhn. Univ. Ser. Tekhn. Tekhnol. Energet., 325, No. 4, 6–15 (2014).Google Scholar
  8. 8.
    F. M. Arinkin, Sh. Kh. Gizatulin, S. N. Koltochnik, et al., “Results of reactor resource tests of the experimental FA VVR-KN with low-enrichment fuel,” Abstr. Int. Conf. on Safety of Nuclear Research Installations, Dimitrovgrad (2014), p. 96.Google Scholar
  9. 9.
    F. M. Arinkin, A. O. Beysebaev, Sh. Kh. Gizatulin, et al., “On the possibility of using beryllium reflector in an existing core WWR-K,” Vest. NYaTS RK, No. 4(36), 106–112 (2008).Google Scholar
  10. 10.
    A. Shaimerdenov, F. Arinkin, A. Beisebayev, et al., “New core with low-enriched uranium fuel at the Kazakhstan critical facility,” Proc. IAEA Techn. Meeting on Enhanced Utilization of Zero Power Reactors and Subcritical Assemblies and IGORR 2014, Bariloche, Argentina (2014).Google Scholar
  11. 11.
    A. A. Shaimerdenov, F. M. Arinkin, Sh. Kh. Gizatulin, et al., “Start and neutronic characteristics of the RGP critical bench ‘Institute for Nuclear Physics’ RK with low-enrichment core,” Altern. Energet. Ekol., No. 23(187), 51–59 (2015).Google Scholar
  12. 12.
    L. P. Abagyan, N. I. Alekseev, A. E. Glushkov, et al., “MCU-REA code with nuclear constants DLC/MCUDAT-2.1,” Vopr. At. Nauki Tekhn. Ser. Fiz. Yad. Reakt., 3, 55–62 (2001).Google Scholar
  13. 13.
    MCNP – a General Monte Carlo N-Particle Transport Code, Ver. 5. LA-UR-03-1987 (2008).Google Scholar
  14. 14.
    A. Olson, User’s Guide to the PLTEMP, Ver. 2.1. ANL (2004).Google Scholar
  15. 15.
    W. Woodruff and R. Smith, User’s Guide for the ANL Version of the PARET Code, ANL (2001).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • F. M. Arinkin
    • 1
  • A. A. Shaimerdenov
    • 1
  • Sh. Kh. Gizatulin
    • 1
  • D. S. Dyusambaev
    • 1
  • S. N. Koltochnik
    • 1
  • P. V. Chakrov
    • 1
  • L. V. Chekushina
    • 1
  1. 1.Institute of Nuclear PhysicsAlamtyKazakhstan

Personalised recommendations