Skip to main content
Log in

Heat Transfer in Turbulent Flow. Part 2. Velocity and Temperature Distributions

  • Published:
Atomic Energy Aims and scope

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Relations describing the velocity and temperature distributions are studied on the basis of an analysis of a large amount of experimental data from investigations of temperature fields in turbulent flow of different media – air, water (P ≥ 1) and liquid metal (Pr << 1). It is noted that the use of the coefficients νt and at of turbulent transfer of momentum and heat, respectively, as well as their ratio – the Prandtl number – for the calculation of the heat transfer intensity can lead to significant errors, though in so doing an apparent correspondence is observed between the experimental and computations data expressed in logarithmic coordinates in the form Nu = ƒ(Re) or Nu = ƒ(Pr), Nu = ƒ(Pe). It is concluded that in engineering calculations of heat transfer in turbulent flow it is preferable to use relations based on the velocity and temperature distributions at Pr = const.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Th. Karman, “Über laminare und turbulente Reibung (about laminar and turbulent friction),” Zeits. Angew. Math. Mech., 1, No. 4, 233–252 (1921).

    Article  MATH  Google Scholar 

  2. L. G. Loitsyanskii, Mechanics of Liquids and Gases, Drofa, Moscow (2003), 6th ed.

    MATH  Google Scholar 

  3. H. Reichardt, “Vollständige Darstellung der turbulenten Geschwindigkeitsverteilung in glatten Leitungen,” Zeits. Angew. Math. Mech., 31, No. 7, 208–219 (1951).

    Article  MATH  Google Scholar 

  4. P. L. Kirillov, Yu. M. Markov, and V. I. Slobodchuk, Temperature Distribution and Heat Transfer in Turbulent Flow in a Circular Tube, Preprint FEI-1703 (1985).

  5. Yu. D. Levchenko and P. A. Ushakov, New Relation for the Turbulent Velocity Profile for Flow of Liquid in Circular Tubes, Prepring FEI-561 (1975),

  6. F. I. Kalbaliev, “Determination of the average temperature and concentration in turbulent flow of liquid in a tube and boundary layer on a plate,” Inzh.-Fiz. Zh., 29, No. 2, 244–250 (1975).

    Google Scholar 

  7. V. A. Kuleshov, A. F. Polyakov, and Yu. L. Shekhter, “Experimental study of the velocity and temperature fields in turbulent flow of air with variable properties,” Teplofiz. Vys. Temp, 16, No. 2, 332–338 (1978).

    ADS  Google Scholar 

  8. P. L. Kirillov (ed.), “Coefficients of friction resistance in channels of different form: turbulent flow,” in: Handbook of Thermohydraulic Calculations in Nuclear Power, IzdAT, Moscow (2010), Vol. 1, pp. 37–47.

  9. R. Haberstroh and L. Baldwin, “ Application of a simplified velocity profile to prediction of pipe-flow heat transfer,” Trans. ASME J. Heat Transfer, 90, No. 2, 191– 198 (1968).

    Article  Google Scholar 

  10. F. Pierce, J. Ma Allster, and M. Tennant, “A review of near-wall similarity models in three-dimensional turbulent boundary layers,” Trans. ASME J. Fluids Eng., Ser. I, 105, 251–256 (1983).

    Article  Google Scholar 

  11. G. I. Barenblatt, A. Dzh. Korin, and V. M. Prostokishin, “Turbulent flow at very large Reynolds numbers,” Usp. Fiz. Nauk, 184, No. 3, 265–272 (2014).

  12. A. Praskovsky and S. Onsley, “Measurement of the Kolmogorov constant and intermittency exponent at very high Reynolds number,” Phys. Fluids, 6, No. 9, 2886–2889 (1994).

    Article  ADS  Google Scholar 

  13. I. I. Vigdorovich, “Does the wall relation describe the turbulent velocity profile in a tube?” Usp. Fiz. Nauk, 185, No. 2, 213–216 (2015).

    Article  Google Scholar 

  14. K. T. Trinh, “A similarity analysis for heat transfer in Newtonian and power law fluids using the instantaneous wall shear stress” (2010), http://arxiv.org/ftp/arhiv/papers/1009/1009.0092.pdf.

  15. W. Kays, M. Crawford, and B. Weigand, Convective Heat and Mass Transfer, McGraw Hill, Boston (2005), 4th ed.

    Google Scholar 

  16. R. Gowen and Y. Smith, “The effect of the Prandtl number on temperature profiles for heat transfer in turbulent pipe flow,” Chem. Eng. Sci., 22, No. 2, 1701– 1711 (1967).

    Article  Google Scholar 

  17. R. Johnk and T. Hanratty, “Temperature profiles of air in a pipe. Pt. I and II,” Chem. Eng. Sci., 17, 867–892 (1962).

    Article  Google Scholar 

  18. A. Snuders, A. Koppius, and C. Nieuwvelt, “An experimental determination of the turbulent Prandtl number in the boundary layer for air flow over a flat plate,” Int. J. Heat Mass Transfer, 26, No. 3, 425–431 (1983).

    Article  ADS  Google Scholar 

  19. A. A. Shlanchauyskas and A. A. Pyadishyus, “Effect of turbulent external flow on heat transfer in a turbulent boundary layer,” in: Teploobmen-1978, Nauka, Moscow (1980), pp. 76–78.

  20. B. S. Petukhov, A. F. Polyakov, and V. A. Kuleshov, “Temperature distribution in turbulent flow of air with constant properties,” Trudy MEI, No. 313, 40–44 (1976).

  21. L. Thomas, “Temperature profiles for liquid metals and moderate-Prandtl-number fluids,” Trans. ASME J. Heat Transfer, 92, No. 3, 565–567 (1970).

    Article  Google Scholar 

  22. B. Blackwell, W. Kays, and R. Moffat, The Turbulent Boundary Layer on a Porous Plate: an Experimental Study of the Heat Transfer Behaviour with Adverse Pressure Gradients, Rep. HMT-16, Stanford Univ., Stanford (1972).

  23. J. Smith, R. Gowen, and B. Wasmund, “Eddy diffusivities and temperature profiles for turbulent heat transfer to ware in pipes,” Chem. Eng. Progr. Symp. Ser., 63, 92–100 (1967).

    Google Scholar 

  24. R. Gowen and J. Smith, “Turbulent heat transfer from smooth and rough surfaces,” Int. J. Heat Mass Transfer, 11, No. 11, 1657–1673 (1968).

    Article  Google Scholar 

  25. Che Pen Chen, “Etude experimentale de la couche limite thermique turbulente dans l’eau,” Int. J. Heat Mass Transfer, 12, No. 1, 61–70 (1969).

  26. A. A. Shlanchyauskas and M.-P. M. Drizhyus, “Temperature profiles near a wall in turbulent boundary layer of different liquids,” Trudy Akad. Nauk Litovskoi SSR, Ser. B, 1, No. 64, 189–203 (1971).

    Google Scholar 

  27. T. Wei and W. Willmarth, “Reynolds number effects on the structure of a turbulent channel flow,” J. Fluid Mech., 204, No. 7, 57–95 (1989).

    Article  ADS  Google Scholar 

  28. A. Kudva and A. Sesonke, “Structure of turbulent velocity and temperature fields in ethylene glycol pipe flow at low Reynolds number,” Int. J. Heat Mass Transfer, 15, No. 1, 127–145 (1972).

    Article  Google Scholar 

  29. I. Neuman, “Transfert de chauleur en regime turbulent pour les grands numbers de Prandtl,” Informs Aueral Therm., 5, No. 17, 4–20 (1968).

    Google Scholar 

  30. A. A. Pyadishyus, Turbulent Prandtl Number and Universal Temperature Profiles at Different Prandtl Numbders: Auth. Abstr. Dissert. Cand. Techn. Sci., Kaunas. Polytech. Inst. (1969).

  31. A. A. Zhukauskas and A. A. Shlanchayauskas, “Heat emission in turbulent fluid flow,” in: Teplofizika-5, Izd. Mintis, Vilnius (1973).

  32. E. P. Dyban and E. Ya. Epik, “Heat transfer in the boundary layer of a plate in turbidized air flow,” in: Teploobmen-1978, Nauka, Moscow (1980), pp. 64–75.

  33. A. Malhotra and S. Kang, “Turbulent Prandtl number in circular pipes,” Int. J. Heat Mass Transfer, 27, No. 11, 2158–2161 (1984).

    Article  Google Scholar 

  34. A. Luikov, V. Aleksashenko, and A. Aleksashenko, “Analytical methods of solution of conjugated problems in convective heat transfer,” Int. J. Heat Mass Transfer, 14, No. 8, 1047–1056 (1971).

    Article  MATH  Google Scholar 

  35. K. Lin and L. Chow, “Effects of wall conduction on heat transfer for turbulent flow in a circular tube,” Trans. ASME J. Heat Transfer, 106, No. 3, 597–604 (1984).

    Article  Google Scholar 

  36. “Low Prandtl number thermal-hydraulics,” in: Handbook on Lead-Bismuth Eutectic Alloy and Lead Properties, Materials, Compatibility, Thermal Hydraulics and Technologies, OECD-NEA No. 7268 (2015), pp. 651–681.

  37. P. L. Kirillov and P. A. Ushakov, “Heat transfer of liquid metals: characteristics, methods of investigation, and basic relations,” Teploenergetika, No. 1, 49–56 (2001).

  38. H. Brown, B. Amstead, and B. Short, “The transfer of heat and momentum in a turbulent stream of mercury,” Trans. ASME J., 79,. 279–285 (1957).

    Google Scholar 

  39. L. S. Kokorev and V. N. Pyaposov, “Measurements of the temperature distribution in turbulent flow of mercury in a circular tube,” in: Liquid Metals, Gosatomizdat, Moscow (1963), pp. 124–138.

  40. V. I. Subbotin, V. Kh. Ibragimov, and V. E. Nomofilov, “Measurement of temperature fields in turbulent tube flow of mercury,” Teploenergetika, No. 6, 70–74 (1963).

  41. V. M. Borishanskii, T. V. Zablotskaya, and N. I. Ivashchenko, “Investigation of heat emission in mercury flow in horizontal and vertical tubes,” in: Convective Heat Transfer in Two- and One-Phase Flows, Energiya, Moscow (1964), pp. 350–362.

  42. H. Buhr, E. Horsten, and A. Carr, “The distortion of turbulent velocity and temperature profiles on heating for mercury in a vertical pipe,” Trans. ASME J. Heat Transfer, 96, No. 2, 152–158 (1974).

    Article  Google Scholar 

  43. V. I. Subbotin, A. K. Papovyants, P. L. Kirillov, et al., “Study of heat emission to liquid sodium in tubes,” At. Energ., 13, No. 4, 380–382 (1962).

    Google Scholar 

  44. V. M. Borishanskii, T. V. Zablotskaya, and N. I. Ivashchenko, “Study of heat transfer and temperature fields in turbulent motion of metallic sodium in tubes,” in: Convective Heat Transfer in Two-Phase and One-Phase Flows, Energiya, Moscow (1964), pp. 363–377.

  45. L. Taccoen, “Contribution a l’etude des echanges thermiques en ecoulement turbulent dans un tube lisse. Application aux metaux liquides,” Int. J. Heat Mass Transfer, 10, No. 12, 1649–1660 (1967).

    Article  Google Scholar 

  46. P. L. Kirillov, V. I. Subbotin, M. Ya. Suvorov, and M. F. Troyaov, “Investigation of heat emission in tube to the alloy sodium–potassium,” in: Problems of Heat Transfer, Izd. AN SSSR, Moscow (1959), pp. 80–95.

  47. N. A. AMpleev, P. L.Kirillov, V. I. Subbotin, and M. Ya. Suvorov, “Heat transfer of liquid metl in vertical tube at low Pe numbers,” in: Liquid Metals, Atomizdat, Moscow (1967), pp. 15–32.

  48. C. Sleicher, A. Awad, and K. Notter, “Temperature and eddy diffusivity profiles in NaK,” Int. J. Heat Mass Transfer, 16, No. 8, 1565–1575 (1973).

    Article  Google Scholar 

  49. V. I. Subbotin, M. Kh. Ibragimov, M. N. Ivanovskii, et al., “Heat emission in turbulent flow of liquid metals in tubes,” At. Energ., 11, No. 2, 133–139 (1961).

    Google Scholar 

  50. P. L. Kirillov, “Colligation of experimental data on heat transfer in liquid metals,” At. Energ., 120, No. 4, 198–201 (2016).

    Google Scholar 

  51. P. L. Kirillov, “On the impact of the thermophysical properties of surfaces on heat emission in turbulent flow,” Inzh.-Fiz. Zh., 50, No. 3, 501–512 (1986).

    Google Scholar 

  52. V. N. Vinogradov, I. B. Katan, and P. L. Kirillov, Statistical Analysis of Data on Heat Emission of Liquid Metals in Circular Tubes from Different Materials, Preprint FEI-1639 (1984).

  53. B. A. Kader and A. I. Yaglom, “Universal law of heat and mass transfer from a wall at large Reynolds and Peclet numbers,” Dokl. Akad. Nauk SSSR, 190, No. 1, 65–68 (1970).

    Google Scholar 

  54. B. Kader and A. Jaglom, “Heat and mass transfer laws for fully turbulent wall flows,” Int. J. Heat Mass Transfer, 15, No. 12, 2329–2351 (1972).

    Article  Google Scholar 

  55. P. L. Kirillov, Analysis of Computational Relations on Heat Transfer in Turbulent Flow in Pipes, Review FEI-0230, TSNIIatominform, Moscow (1988).

  56. V. I. Subbotin, V. Kh. Ibragimov, and V. E. Nomofilov, “Colligating dependence of the coefficient of turbulent heat transfer in fluid flow,” Tepolofiz. Vys., Temp., 3, No. 3, 421–426 (1965).

    Google Scholar 

  57. B. A. Kader and A. P. Aronov, “Statistical analysis of experimental works on heat and mass transfer at large Prandtl numbers,” Teor. Osn. Khim. Tekhnol., 4, No. 5, 637–652 (1970).

    Google Scholar 

  58. M. Kh. Ibragimov, V. I. Subbotin, and V. P. Bobkov, Structure of Turbulent Flow and Mechanism of Heat Transfer in Channels, Atomizdat, Moscow (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Atomnaya Énergiya, Vol. 122, No. 4, pp. 192–203, April, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirillov, P.L. Heat Transfer in Turbulent Flow. Part 2. Velocity and Temperature Distributions. At Energy 122, 230–242 (2017). https://doi.org/10.1007/s10512-017-0261-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10512-017-0261-9

Navigation