Atomic Energy

, Volume 121, Issue 1, pp 63–69 | Cite as

Uranium-Plutonium Fuel Cycle of a Fast Molten-Salt Reactor

  • L. I. Ponomarev
  • Yu. S. Fedorov
  • A. E. Miroslavov
  • A. M. Degtyarev


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Serp, M. Allibert, O. Benesh, et al., “The molten salt reactor in Generation IV: overview and perspectives,” Progr. Nucl. Energy, 77, 308–319 (2013).CrossRefGoogle Scholar
  2. 2.
    T. Takizuka, JAERI and PNC OMEGA Project (Japan), IAEA-TECDOC-985 (1997).Google Scholar
  3. 3.
    K. Furukawa, K. Arakawa, and Erbay, et al., “A road map for the realization of global-scale thorium breeding fuel cycle by single molten-fluoride flow,” Energy Convers. Manag., 49, 1832–1847 (2008).Google Scholar
  4. 4.
    V. Ignatiev, O. Feynberg, A. Surenkov, et al., “Progress in development of MOSART concept with Th support,” ICAPP, 2, 943–952 (2012).Google Scholar
  5. 5.
    E. Merle-Lucotte, C. Le, C. Brun, et al., “Molten salt reactors and possible scenarios for future nuclear power development,” in: PHISOR (2004), pp. 1–12.Google Scholar
  6. 6.
    O. Benes and R. Konings, “Actinide burner fuel: potential compositions based on thermodynamics evaluation of MF–PuF3 (M–Li, Na, K, Rb, Cs) and LaF3–PuF3 systems,” J. Nucl. Mater., 377, No. 3, 449–457 (2008).ADSCrossRefGoogle Scholar
  7. 7.
    A. M. Degtyarev and L. I. Ponomarev, “Molten salt reactor with a fast neutron spectrum based LiF–NaF–KF,” At. Énerg., 112, No. 6, 367–368 (2012).CrossRefGoogle Scholar
  8. 8.
    A. A. Lizin, S. V. Tomilin, O. E. Gnevashov, et al., “Solubility of UF4 and ThF4 in the melt LiF–NaF–KF,” At. Énerg., 115, No. 1, 20–22 (2013).Google Scholar
  9. 9.
    A. A. Lizin, S. V. Tomilin, O. E. Gnevashov, et al., “Solubility of PuF3, AmF3, CeF3, and NdF3 in the melt LiF–NaF–KF,” ibid., 11–15.Google Scholar
  10. 10.
    M. V. Voloshin, R. Ya. Zakirov, P. N. Mushnikov, et al., “Solubility of CeF3 and PuF3 in the melt LiF–NaF–KF,” ibid., 17–19.Google Scholar
  11. 11.
    L. I. Ponomarev, M. B. Seregin, A. P. Parshin, et al., “Choice of fuel salt for molten-salt reactor,” ibid., 6–11.Google Scholar
  12. 12.
    Molten-Salt Reactor Program Quarterly Progress Report for Period Ending, Rep. ORNL-2799 (1959).Google Scholar
  13. 13.
    L. Matieu, D. Heuer, E. Merle-Lucotte, et al., “Possible configurations for the thorium molten salt reactor and advantages of the fast nonmoderated version,” Nucl. Sci. Eng., 161, 78–89 (2009).CrossRefGoogle Scholar
  14. 14.
    The Economics of the Back End of the Nuclear Fuel Cycle, OECD NEA No. 7061 (2013).Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • L. I. Ponomarev
    • 1
  • Yu. S. Fedorov
    • 2
  • A. E. Miroslavov
    • 2
  • A. M. Degtyarev
    • 3
  1. 1.Bochvar All-Russia Research Institute for Inorganic Materials (VNIINM)MoscowRussia
  2. 2.Scientific-Industrial Association – Khlopin Radium InstituteSt. PetersburgRussia
  3. 3.National Research Center Kurchatov InstituteMoscowRussia

Personalised recommendations