Precision Neutron-Physical Experiments at the National Research Center Kurchatov Institute

Precision (benchmark) experiments on uranium systems with different moderators performed at the National Research Center Kurchatov Institute in a wide range of enrichment, ratios between the nuclear concentration of the moderator and uranium, as well as temperature are reviewed. The requirements of the arrangement of the experiments and participation of Russian specialists in international projects for the evaluation of the benchmark-experiments in terms of the critical nuclear safety (ICSBEP) and evaluated reactor-physical benchmark-experiments (IRPhEP) (NEA OECD) are discussed. The evolution of the experimental base required for performing such experiments and its current status are briefl y discussed.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    I. V. Kurchatov and I. S. Panasyuk, in: Works by the Staff at the Kurchatov Institute of Atomic Energy, Energoatomizdat, Moscow (1982), pp. 7–26.

  2. 2.

    A. Yu. Gagarinskii, “Critical benchmark-experiments at National Research Center Kurchatov Institute,” At. Énerg., 84, No. 6, 495–501 (1998).

  3. 3.

    A. A. Bykov, A. Yu. Gagarinski, E. S. Glushkov, et al., “Programs of experiments with critical assemblies at the Russian Research Centre Kurchatov Institute,” Nucl. Sci. Eng., 145, 181–187 (2003).

  4. 4.

    G. A. Gladkov and Yu. V. Nikol’skii, “First water moderated and cooled critical assemblies in the USSR,” At. Énerg., 90, No. 2, 88–90 (2001).

  5. 5.

    A. Yu. Gagarinskii, A. A. Bykov, E. A. Dvoinishnikov, et al.,“Kurchatov experimental base for the development of ship nuclear power,” Sci.-Techn. Conf. Ship Nuclear Power for 21st Century, Aleksandrov NITI, Oct. 23–25, 2012.

  6. 6.

    A. Yu. Gagarinskii, N. A. Lasukov, D. A. Mastin, et al., “Temperature effects of reactivity of uniform uranium-water critical assemblies in the range 20–280°C,” Vopr. At. Nauki Tekhn. Ser. Fiz. Tekhn. Yad. Reakt., No. 5(18), 113–117 (1981).

  7. 7.

    J. Briggs, “The activities of international criticality safety benchmark evaluation project (ICSBEP),” J. Nucl. Sci. Technol., No. 2, 1427–1432 (2002).

  8. 8.

    J. Briggs, J. Bess, and J. Gulliford, “Integral benchmark data for nuclear data testing through the ICSBEP & IRPhEP,” Int. Conf. on Nucl. Data for Science and Technology INL/CON-12–26696, March 2013.

  9. 9.

    A. A. Bykov, A. Yu. Gagarinski, V. D. Pavlov, et al., in: Int. Handbook of Evaluated Criticality Safety Benchmark Experiments HEU-COMP-THERM-011, HEUCOMP-THERM-012, HEU-COMP-THERM-013, HEUCOMP-THERM-014, NEA/NSC/DOC(95)03/II, OECD/NEA, Sept. 2001, Vol. II.

  10. 10.

    J. Bess, J. Briggs, J. Guilford, and I. Hill, “Current status of the IRPhEP and ICSBEP (August 2014),” in: THTR Conf., Portland, Aug. 2014.

  11. 11.

    A. P. Vasiliev, Yu. A. Sokolov, V. A. Terekhin, et al., “Benchmark experiments at VNIITF test facilities for verifi cation of nuclear data libraries,” Nucl. Sci. Eng., 145, 185–188 (2003).

    Google Scholar 

  12. 12.

    “Experimental studies of the physics of VVER-type uranium-water lattices,” in: Proc. Temporary Int. Team, Academial Kiado, Budapest (1984), Vol. 1.

  13. 13.

    E. V. Burlakov, G. B. Davydova, V. E. Zhigarev, et al., “Analysis of critical experiments performed to validate and improve the design of the RBMK reactor,” Trans. ANS, 77, 380–382 (1997).

    Google Scholar 

  14. 14.

    S. Bakunin, V. Garin, E. Glushkov, et al., “Study of HTGR nuclear criticality safety at GROG and Astra facilities,” in: Proc. 5th Int. Conf. on Nuclear Criticality Safety, ICNC’95, Albuquerque, USA, Sept. 17–21, 1995, Vol. 1, pp. 618–624.

  15. 15.

    N. N. Ponomarev-Stepnoi, E. S. Glushkov, G. V. Kompaniets, and D. N. Polyakov, Graphite Annular Core Assemblies with Spherical Fuel Elements Containing Coated UO2 Fuel Particles, ASTRA-GCR-EXP-001-CRIT, NEA/NCS/ DOC(2006)01.

  16. 16.

    N. N. Ponomarev-Stepnoi, E. S. Glushkov, G. V. Kompaniets, et al., “Statistical analysis of the characteristics of spherical fuel elements and graphite and absorbing elements of HTGR for the ASTRA stand,” Vopr. At. Nauki Tekhn. Ser. Fiz. Yad. Reakt., No. 2, 82–93 (2008).

  17. 17.

    N. N. Ponomarev-Stepnoi, E. S. Glushkov, G. V. Kompaniets, et al., “Physical characteristics of reactor graphite,” ibid., pp. 57–82.

  18. 18.

    A. Yu. Gagarinski, V. D. Pavlov, and A. A. Bykov, Water Moderated Hexagonally Pitched Lattices U(80%)O2+Cu Fuel Rods, HEU-COMP-THERM-006, NEA/NSC/DOC(95)03/II, Sept. 2001 Edition.

  19. 19.

    E. S. Glushkov and N. N. Ponomarev-Stepnoi, Intermediate Heterogeneous Assembly with Highly Enriched Uranium Dioxide (96% U-235) and Zirconium Hydride Moderator, HEU-COMP-INTER-001, NEA/NSC/DOC(05) 03/II, Sept. 2001 edition.

  20. 20.

    A. Yu. Gagarinski, E. S. Glushkov, and N. N. Ponomarev-Stepnoi, “A short review of critical experiments performed at the Kurchatov Institute,” in: Proc. Mtg Nuclear Criticality Safety Project, Los Alamos Nat. Lab. (1994).

  21. 21.

    V. A. Usov, N. P. Moroz, and G. V. Kompaniets, “Main results of controlled physical startup of the critical assembly of neutron-physical prototype of the RP-50 thermionic converter reator on the AKSAMIT stand,” in: Innovative Projects and Technology for Nuclear Power, NIKIET, Oct. 10, 2014.

  22. 22.

    V. A. Tereshonok, S. P. Nikonov, M. P. Lizorkin, et al., Specifi cation: Kalinin-3 Coolant Transient Benchmark-Switching-Off of One of the Four Operating Main Circulation Pumps at Nominal Reactor Power, OECD/NEA-DEC (2008).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Gagarinskii.

Additional information

Translated from Atomnaya Énergiya, Vol. 120, No. 4, pp. 191–197, April, 2016. 88–90 (2001).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gagarinskii, A.Y. Precision Neutron-Physical Experiments at the National Research Center Kurchatov Institute. At Energy 120, 240–247 (2016). https://doi.org/10.1007/s10512-016-0124-9

Download citation