Skip to main content
Log in

Determination of the Thermohydraulic Parameters of Inter-Fuel-Element Channels in Research Reactors with Four-Bladed Fuel Elements

  • Published:
Atomic Energy Aims and scope

Evaluations of the coefficients of hydraulic resistance and heat emission in the cores of the SM and PIK research reactors operating at nominal power are presented. The evaluations were obtained taking account of the shape of the flow section of an inter-fuel-element channel and the surface roughness of the fuel elements. The values obtained agree with the experimental values to within the errors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. M. Vlasov and I. I. Fedik, Fuel Elements of Nuclear Rocket Motors, TSNIIatominform, Moscow (2001).

  2. L.-V. Ashmantas and B. V. Dzyubenko, Problems of Heat Exchange and Hydrodynamics in Nuclear Power Propulsion Setups on Spacecraft, Pradai, Vilnius (1997).

  3. E. K. D’yakov, G. V. Konyukhov, and V. G. Konyukov, “Experimental investigation of the effect of perturbations in the geometry of a regularly porous system on the hydrodynamic characteristics of fuel assemblies of a nuclear reactor,” Inzh.-Fiz. Zh., 81, No. 2, 365–372 (2008).

    Google Scholar 

  4. A. C. Diakov, A. M. Dmitriev, J. Kang, et al., “Feasibility of converting Russian icebreaker reactors from HEU to LEU fuel,” Sci. Glob. Secur., 14, 33–48 (2006).

    Article  Google Scholar 

  5. N. N. Ponomarev-Stepnoi and E. S. Glushkov, “Development of fast helium cooled reactors in Russia,” Proc. Int. Conf. Nuclear Energy in New Europe, Slovenia, Sept. 8–11, 2003, Rep. 102.

  6. T. Conboy and P. Hejzlar, “Thermal-hydraulic performance of cross-shaped spiral fuel in high-power density BWRs,” Proc. ICONE-14, USA, July 17–20, 2006, Paper 89809.

  7. T. Conboy, T. McKrell, and M. Kazimi, “Experimental investigation of hydraulic and lateral mixing for helical-cruciform fuel rod assemblies,” Nucl. Technol., 182, No. 2, 59–273 (2013).

    Google Scholar 

  8. T. Conboy, T. McKrell, and M. Kazimi, “Evaluation of helical cruciform fuel rod assemblies for high-power density LWRs,” Nucl. Technol., 188, No. 2, 139–153 (2014).

    Google Scholar 

  9. V. A. Tsykanov, M. N. Svyatkin, A. V. Klinov, and V. A. Starkov, “Modernization of the SM reactor core,” Research Reactors: Science and High Technologies, GNTS NIIAR, Dimitrovgrad (2002), Vol. 2(1), pp. 13–16.

  10. A. N. Erykalov, O. A. Kolsenichenko, K. A. Konoplev, et al., The PIK Reactor, Preprint PIYAF-1784 (1992).

  11. V. A. Starkov, V. E. Fedoseev, and V. Yu. Shishin, “Modeling of the conditions and results of loop tests of modified fuel elements of the SM reactor in validation of their serviceability,” Izv. Vyssh. Uchebn. Zaved. Yad. Energet., No. 2, 105–113 (2013).

  12. E. A. Garusov and S. D. Grachev, “Calculation of the temperature of bodies with cruciform transverse cross section,” At. Énerg., 51, No. 6, 397–399 (1981).

    Google Scholar 

  13. A. V. Alekseev, “Tvel software system for calculating the temperature of fuel elements under normal and emergency operating conditions,” Vopr. At. Nauki Tekhn. Ser. Fiz. Yad. Reakt., No. 2, 83–89 (1999).

  14. R. Shirvan and M. Kazimi, “Three-dimensional considerations in thermal-hydraulics of helical-cruciform fuel rods for LWR power uprates,” Nucl. Eng. Des., 270, 250–272 (2014).

    Article  Google Scholar 

  15. E. A. Garusov and S. D. Grachev, Heat Removal from Cylindrical Fuel Elements with an Extended Surface, Preprint LIYAF-1285 (1987).

  16. V. S. Gol’ba and V. I. Belozerov, “Calculation of the temperature of bodies with complex transverse cross sections in the presence of surface boiling of the coolant,” Izv. Vyssh. Uchebn. Zaved. Yad. Energet., No. 6, 69–71 (1994).

  17. E. A. Garusov and S. D. Grachev, Effect of the Heat Emission Distribution on the Nonuniformity of the Heat Flux from Cylindrical Fuel Elements with Extended Surfaces, Preprint LIYAF-1570 (1990).

  18. G. A. Kirsanov, K. A. Konoplev, Zh. A. Shishkina, and A.N. Syasin, “Hydraulic characteristics of PIK fuel elements,” Basic Results of Scientific Research 1990–1991, PIYaF RAN, St. Petersburg (1992), pp. 184–185.

  19. V. I. Ageenkov, E. G. Bek, V. S. Volkov, et al., “Parameters and manufacture technology of the fuel elements of the PIK reactor,” At. Énerg., 92, No. 6, 438–444 (2003).

    Google Scholar 

  20. A. V. Klinov, N. K. Kalinina, N. Yu. Marikhin, et al., “Tests of experimental fuel assemblies with low harmful absorption of neutrons in the SM reactor,” Izv. Vyssh. Uchebn. Zaved. Yad. Energet., No. 2, 114–122 (2013).

  21. A. I. Leont’ev and V. V. Olimpiev, “Effect of heat-exchange intensifiers on the thermohydraulic properties of channels,” Teplofiz. Vys. Temp., 45, No. 6, 925–953 (2007).

    Google Scholar 

  22. M. Shockling, J. Allen, and A. Smits, “Roughness effects in turbulent pipe flow,” Fluid Mech., 564, 267–285 (2006).

    Article  ADS  MATH  Google Scholar 

  23. K. Flack, M. Schultz, and W. Rose, “The onset of roughness effects in the transitionally rough regime,” Int. J. Heat and Fluid Flow, 35, 160–167 (2012).

    Article  Google Scholar 

  24. J. Nikuradse, “Ströomungsgesetze in rauhen Rohren,” VDI-Forschungsheft, 4, 1–22 (1933).

    MATH  Google Scholar 

  25. R. Simpson, “A generalized correlation of roughness density effects on the turbulent boundary layer,” Raket. Tekhn. Kosmon., 11, No. 2, 142–144 (1973).

    Google Scholar 

  26. C. Colebrook and C. White, “Experiments with fluid friction in roughened pipes,” Proc. Royal Soc. London A, 161, 367–368 (1937).

    Article  ADS  Google Scholar 

  27. C. Colebrook, “Turbulent flow in pipes with particular reference to the transitional region between smooth and rough wall laws,” J. Inst. Civ. Eng., 11, 133–156 (1939).

    Article  Google Scholar 

  28. N. Afzal and A. Seena, “Alternate scales for turbulent flow in transitional rough pipes: universal log laws,” J. Fluid Eng., 129, 80–90 (2007).

    Article  Google Scholar 

  29. B. McKeon, M. Zagarola, and A. Smits, “A new friction factor relationship for developed pipe flow,” J. Fluid Mech., 538, 429–443 (2005).

    Article  ADS  MATH  Google Scholar 

  30. N. Afzal, “Friction factor directly from transitional roughness in a turbulent pipe flow,” J. Fluid Eng., 129, 1255–1267 (2007).

    Article  Google Scholar 

  31. J. Allen, M. Shockling, G. Kunkel, and A. Smits, “Turbulent flow in smooth and rough pipes,” Philosoph. Trans., A365 (1852), 699–714 (2007).

    ADS  MATH  Google Scholar 

  32. J. McGovern, Friction Factor Diagrams for Pipe Flow. Technical Note, Dublin Inst. Technol., Ireland (2011).

  33. L. Langelandsvik, G. Kunkel, and A. Smits, “Flow in a commercial steel pipe,” J. Fluid. Mech., 595, 323–339 (2008).

    Article  ADS  MATH  Google Scholar 

  34. B. V. Dzyubenko and V. M. Ievlev, “Heat exchange and hydraulic resistance in the intertube space of a heat exchanger with helical flow,” Izv. AN SSSR, No. 5, 117–125 (1980).

  35. Yu. I. Danilov, B. V. Dzyubenko, G. A. Dreitser, and L. V. Ashmantas, Heat Exchange and Hydraulics in Channels with Complicated Shapes, Mashinostroenie, Moscow (1986).

  36. B. V. Dzyubenko, “Hydraulic resistance and heat exchange accompanying forced flow of coolant in the channels of a nuclear power propulsion setup,” 3rd Russ. Conf. on Heat Exchange, MEI, Moscow (2002), Vol. 2, pp. 131–134.

  37. I. E. Idel’chik, Handbook of Hydraulic Resistances, Mashinostroenie, Moscow (1975).

  38. V. A. Tsykanov, A. V. Klinov, and V. A. Starkov, “Experience in development, reconstruction, and operation of the SM high-flux research reactor,” Physics and Engineering of Reactors: 34th Winter School of PIYaF, PIYaF RAN, St. Petersburg (2000), pp. 3–16.

  39. B. Сésna, “Experimental investigation of resistance in rod bundles with wire-wrapped tubes in axial flow,” Energetika, 4, 37–42 (1998).

    Google Scholar 

  40. A. G. Chukhlov, V. P. Smirnov, and S. Yu. Afonin, “Application of periodic boundary conditions to the thermodynamic calculation of fuel assemblies with ribbed fuel elements,” Teploenergetika, No. 2, 44–50 (2012).

  41. M. Kh. Ibragimov, V. I. Subbotin, V. P. Bobkov, et al., Structure of Turbulent Flow and Mechanism of Heat Exchange in Channels, Atomizdat, Moscow (1978).

  42. B. A. Kader, “Heat and mass transfer from walls covered by two-dimensional roughness at large Reynolds and Peclet numbers,” TOKhT, 13, No. 5, 663 (1979).

  43. E. V. Ushpuras, V. M. Shimonis, and Yu. V. Vilemas, “Calculation of the temperature of rough ring-shaped channels,” Trudy AN Lit. SSR, Ser. B1 (146), 54–59 (1985).

  44. C. Wang, C. Chiori, and D. Lu, “Single-phase heat transfer and flow friction correlations for a microfin tubes,” Int. J. Heat and Fluid Flow, 17, No. 5, 500–508 (1996).

    Article  Google Scholar 

  45. Jian Su and A. P. Silva Freire,”Analytical prediction of friction factors and Nusselt numbers of forced convection in rod bundles with smooth and rough surfaces,” Nucl. Eng. Des., 217, 111–127 (2002).

  46. P. L. Kirillov, Yu. S. Yur’ev, and V. P. Bobkov, Handbook of Thermohydraulic Calculations, Energoatomizdat, Moscow (1984).

  47. B. Gröser, Experimentalle Ermitting der Temperaturverteilung auf der Oberflacheeines Brennelements mit Sternförmigen Querschnitt, Bericht Techn. Univ. Dresden (1967).

  48. I. S. Kochenov and E. L. Ogin, “Convective heat transfer in channels with complex shapes,” Vopr. At. Nauki Tekhn. Ser. Reaktorostr., No. 1–2, 58–62 (1976).

  49. V. P. Burinkin, A. V. Klinov, and V. A. Starkov, “Results of research on fuel elements in validation of the serviceability of uranium-intensive fuel elements of the SM-2 reactor,” Trudy NIIAR, NIIAR, Dimitrovgrad (2003), No. 2, 35–45 (2003).

  50. O. E. Stepanov, V. E. Karnaukhov, A. M. Khudyakov, et al., “Comparative analysis of methods for calculating heat emission during boiling of water with underheating,” Teploenergetika, No. 3, 28–34 (2014).

  51. V. A. Kurganov, Yu. A. Zeigarnik, and I. V. Maslakova, “Heat transfer and hydraulic resistance of supercritical pressure coolants. Pt III. Generalized description of SCP fluids normal heat transfer, empirical calculating correlations, integral method of theoretical calculations,” Int. J. Heat and Mass Transfer, 67, 535–547 (2013).

    Article  Google Scholar 

  52. X. Cheng, J. Yang, and S. Huang, “A simplified method for heat transfer prediction of supercritical fluids in circular tubes,” Ann. Nucl. Energy, 36, 1120–1128 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Atomnaya Énergiya, Vol. 119, No. 6, pp. 311–317, December, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garusov, E.A. Determination of the Thermohydraulic Parameters of Inter-Fuel-Element Channels in Research Reactors with Four-Bladed Fuel Elements. At Energy 119, 384–390 (2016). https://doi.org/10.1007/s10512-016-0078-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10512-016-0078-y

Keywords

Navigation