Advertisement

Atomic Energy

, Volume 118, Issue 2, pp 117–123 | Cite as

Fracture Toughness of VVER and PWR Uranium-Dioxide Fuel Pellets with Different Grain Size

  • V. V. Novikov
  • R. B. Sivov
  • E. N. Mikheev
  • A. V. Fedotov
Article

The results of experimental studies of crack formation and fracture toughness of VVER and PWR uranium dioxide fuel pellets with different grain size are presented for the purpose of making a comparative analysis of their strength properties. It is found that as the grains increase in size their Young’s modulus and the microhardness increase and the fracture toughness decreases. It is determined that for relatively small loads (to 1 kg) the formation of Palmqvist cracks is characteristic for uranium oxide pellets, and in the case of large grains they propagate freely over a large distance right through grains (transcrystallite propagation) while for small grains they propagate predominately along grain boundaries with branching (intercrystallite propagation).

Keywords

Uranium Fracture Toughness Stress Intensity Factor Small Load Uranium Oxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. I. Pyatykhin, A. G. Val’ko, and I. I. Papirov, Determination of the Fracture Toughness by the Indentation Method, TSNIIatominform, Moscow (1987).Google Scholar
  2. 2.
    G. Fantozzi, G. Orange, K. Liang, et al., “Effect of nonstoichiometry of fracture toughness and hardness of yttrium glide ceramics,” J. Am. Ceram. Soc., 72, 1562–1563 (1989).CrossRefGoogle Scholar
  3. 3.
    G. A. Gogotsi and A. V. Bashta, “Investigation of ceramics with penetration of a diamond Vickers pyramid,” Probl. Prochn., No. 9, 49–54 (1990).Google Scholar
  4. 4.
    J. Gong, J. Wang, and Z. Guan, “Indentation toughness of ceramics: а modified approach,” J. Mater. Sci., 37, 865–869 (2002).ADSCrossRefGoogle Scholar
  5. 5.
    A. Hall, “Elastic moduli and internal friction of some uranium ceramics,” J. Nucl. Mater., 37, 314–323 (1970).ADSCrossRefGoogle Scholar
  6. 6.
    K. Yamada, S. Yamanaka, and M. Katsura, “Mechanical properties of (U, Ce)O2,” J. Alloys Comp., 271–273, 697–701 (1998).CrossRefGoogle Scholar
  7. 7.
    A. Sengupta, C. Basak, T. Jarvis, et al., “Effect of titania addition on hot hardness of UO2J. Nucl. Mater., 325, 141–147 (2004).ADSCrossRefGoogle Scholar
  8. 8.
    K. Kapoor, A. Ahmad, A. Laksminarayana, and G. Hemanth Rao, “Fracture properties of sintered UO2 ceramic pellets with duplex microstructure,” J. Nucl. Mater., 366, 87– 98 (2007).ADSCrossRefGoogle Scholar
  9. 9.
    B. Lawn and E. Fuller, “Equilibrium penny-like cracks in indentation fracture,” J. Mater. Sci., 10, 2016–2024 (1975).ADSCrossRefGoogle Scholar
  10. 10.
    A. Evans and E. Charles, “Fracture toughness determinations by indentation,” J. Am. Ceram. Soc., 59, 371–372 (1976).CrossRefGoogle Scholar
  11. 11.
    B. Lawn, A. Evans, and D. Marshall, “Elastic/plastic indentation damage in ceramics: the median/radial crack system,” J. Am. Ceram. Soc., 63, 574–581 (1980).CrossRefGoogle Scholar
  12. 12.
    J. Lankford, “Indentation microfracture in the Palmqvist crack regime: implications for fracture toughness evaluation by the indentation method,” J. Mater. Sci. Lett., 1, 493–495 (1982).CrossRefGoogle Scholar
  13. 13.
    K. Niihara, R. Morena, and D. Hasselman, “Evaluation of K 1c of brittle solids by the indentation method with low crack-to-indent ratios,” J. Mater. Sci. Lett., 1, 13–16 (1982).CrossRefGoogle Scholar
  14. 14.
    K. Niihara, “A fracture mechanics analysis of indentation induced Palmqvist crack in ceramics,” J. Mater. Sci. Lett., 2, 221–223 (1983).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • V. V. Novikov
    • 1
  • R. B. Sivov
    • 1
  • E. N. Mikheev
    • 1
  • A. V. Fedotov
    • 1
  1. 1.Bochvar All-Russia Research Institute for Inorganic Materials (VNIINM)MoscowRussia

Personalised recommendations