Advertisement

Atomic Energy

, Volume 116, Issue 5, pp 311–314 | Cite as

Analysis and Prediction of the Physico-Mechanical Properties of Reactor Steel by Means of Artificial Intelligence and Applied Statistics

  • V. I. Rachkov
  • S. M. Obraztsov
  • Yu. V. Konobeev
  • V. A. Solov’ev
  • M. Yu. Belomyttsev
  • A. V. Molyarov
Article

Keywords

Fuel Element Silicon Content Zirconium Hydride Radiation Material Leipunskii Institute 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Promethian Man: In Celebration of V. A. Malykh’s 90th Birthday (1923–1973) – Recollections, Documents, Photographs, GNTS–FEI, Obninsk (2013).Google Scholar
  2. 2.
    G. G. Gorskii, “Applied mathematical statistics – our profile,” Zav. Lab., Diagn. Mater, No. 1, 96–100 (1997).Google Scholar
  3. 3.
    R. Kemp, G. Cottrell, H. Bhadeshia, et al., “Neural-network analysis of irradiation hardening in low-activation steels,” J. Nucl. Mater., 348, 311–328 (2006).CrossRefADSGoogle Scholar
  4. 4.
    S. M. Obraztsov, G. A. Birzhevoi, Yu. V. Konobeev, et al., “Neural net modification of ferrite-martensite class EP-450 steel according to the criterion of maximum strength and plasticity,” Persp. Mater., No. 4, 14–19 (2005).Google Scholar
  5. 5.
    S. M. Obraztsov, G. A. Birzhevoi, Yu. V. Konobeev, et al., “Neural net modeling of the strength properties of reactor steels,” 15th Int. Conf. Physics of Radiation Phenomena and Radiation Materials Science, Alushta, June 10–15, 2002, pp. 105–106.Google Scholar
  6. 6.
    S. M. Obraztsov, G. A. Birzhevoi, Yu. V. Konobeev, et al., “Neural net analysis of short-time mechanical properties of ferrite-martensite class steels,” Fiz. Khim. Obrab. Mater., No. 2, 92–97 (2004).Google Scholar
  7. 7.
    S. M. Obraztsov, G. A. Birzhevoi, Yu. V. Konobeev, et al., “Development of neural net model of the short-time mechanical properties of reactor steels and user interface,” Vopr. At. Nauki Tekhn. Ser. Materialoved. Nov. Mater., No 1(66), 418–424 (2006).Google Scholar
  8. 8.
    S. M. Obraztsov, G. A. Birzhevoi, Yu. V. Konobeev, et al., “Neural net experiments on the mutual influence of alloying elements on the mechanical properties of 12% Cr ferrite-martensite steels,” Izv. Vyssh. Uchebn. Zaved. Yad. Energet., No. 3, 119–124 (2008).Google Scholar
  9. 9.
    M. Yu. Belomyttsev, M. A. Mikhailov, S. M. Obraztsov, et al., “Experimental investigation of the effect of manganese on the strength of ferrite-martensite class steels with 12% chromium content,” Izv. Vyssh. Uchebn. Zaved. Chern. Metall., No. 3, 45–47 (2011).Google Scholar
  10. 10.
    S. M. Obraztsov, G. A. Birzhevoy, Yu. V. Konobeev, and V. I. Rachkov, “Bootstrap calculation of ultimate strength temperature maxima for neutron irradiated ferritic/martensitic steels,” J. Nucl. Mater., 359, 263–267 (2006).CrossRefADSGoogle Scholar
  11. 11.
    G. V. Lysova, G. A. Birzhevoi, and S. M. Obraztsov, “Temperature dependence of the radiation hardening of EP-823 steel after irradiation by 7 MeV Ni++ ions,” Poverkhn,: Rentg., Sinkhrotr. Neitron. Issled., No. 4, 36–41 (2013).Google Scholar
  12. 12.
    V. I. Rachkov, S. M. Obraztsov, V. A Solov’ev, et al., “Optimization of the chemical composition of ferrite-martensite steel to increase short-time mechanical properties,” At. Énerg., 115, No. 1, 22–27 (2013).CrossRefGoogle Scholar
  13. 13.
    V. I. Rachkov, G. A. Birzhevoi, Yu. V. Konobeev, et al., “Booster-analysis of the temperature dependence of self-diffusion of iron in α, γ and δ phases of iron,” 18th Int. Conf. Radiation Physics of Solids, Moscow (2008), pp. 277–288.Google Scholar
  14. 14.
    C. M. Obraztsov, G. A. Birzhevoi, Yu. V. Konobeev, et al., “Neural net analysis of the effect of alloying elements on the radiation embrittlement of VVER-440 vessel materials,” At. Énerg., 101, No. 5, 353–358 (2006).CrossRefGoogle Scholar
  15. 15.
    S. M. Obraztsov, V. A. Pechenkin, and V. A. Rachkov, “Neural net investigation of the dependence of embrittlement on the hardening of steel for VVER reactors,” Vopr. Materialoved., No. 4, 101–107 (2009).Google Scholar
  16. 16.
    S. M. Obraztsov, Yu. V. Konobeev, V. A. Pechenkin, and V. A. Solov’ev, et al., “Neural net study of the effect of silicon and titanium on the radiation swelling of austenitic stainless steel,” 20th Int. Conf. Radiation Physics of Solids, Sevastopol (2010), pp. 63–67.Google Scholar
  17. 17.
    S. M. Obraztsov, V. A. Pechenkin, N. G. Primakov, and A. N. Andrianov, “Neural net prediction of the maximum yield stress of the alloy Zr+2.5%Nb as a function of the coefficient of stoichiometry of zirconium hydride,” Fiz. Khim. Obrab. Mater., No. 2, 33–35 (2009).Google Scholar
  18. 18.
    V. I. Rachkov, M. Yu. Belomytsev, Yu. V. Konobeev, et al., “Analysis of the yield stress of ferrite-martensite steel by means of neural net modeling and main components,” Vopr. Materialoved., No. 1(77), 11–19 (2014).Google Scholar
  19. 19.
    K. A. Lanskaya, High-Chromium Heat-Temperature Steels, Metallurgiya, Moscow (1976).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • V. I. Rachkov
    • 1
  • S. M. Obraztsov
    • 1
  • Yu. V. Konobeev
    • 1
  • V. A. Solov’ev
    • 1
  • M. Yu. Belomyttsev
    • 2
  • A. V. Molyarov
    • 2
  1. 1.State Science Center of the Russian Federation – Leipunskii Institute for Physics and Power Engineering (GNTs RF – FEI)ObninskRussia
  2. 2.National Research Technological University – Moscow Institute of Steel and Alloys (NITU MISiS)MoscowRussia

Personalised recommendations