Advertisement

Atomic Energy

, Volume 109, Issue 4, pp 257–265 | Cite as

Experimental assessment of the effectiveness of recovery annealing of VVER-1000 vessels

  • Ya. I. Shtrombakh
  • B. A. Gurovich
  • E. A. Kuleshova
  • D. Yu. Erak
  • S. V. Fedotova
  • D. A. Zhurko
  • O. O. Zabusov
  • Yu. A. Nikolaev
Article

An experimental assessment of the effectiveness of recovery annealing of VVER-1000 vessels on the basis of mechanical tests and structural studies of control samples of the main metal and the weld-seam metal with high nickel content (>1.65%) in the No. 1 unit of the Balakovo nuclear power plant in states after primary irradiation in the control sample channels, annealing in a chosen regime, and repeat accelerated irradiation in the IR-8 research reactor to fluence corresponding to extended service to 60 yr and longer is presented. The mechanical tests and structural studies showed a high degree of recovery of the structure and properties for the chosen temperature–time regime of annealing as well as a lower rate of repeated after the recovery annealing embrittlement as compared with the rate of embrittlement with primary irradiation.

Keywords

Weld Seam Radiation Defect Primary Irradiation Main Metal Radiation Embrittlement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. M. Utevskii, E. E. Glikman, and G. S. Kark, Reversible Temper Brittleness of Steel and Iron Alloys, Metallurgiya, Moscow (1985).Google Scholar
  2. 2.
    Yu. A. Nikolaev, “Radiation embrittlement of Cr–Ni–Mo and Cr–Mo RPV steels,” J. ASTM Intern., 4, No. 8, 1–17 (2007).Google Scholar
  3. 3.
    S. A. Saltykov, Stoichiometric Metallography, Metallurgiya, Moscow (1976).Google Scholar
  4. 4.
    P. Kelly, A. Jostsons, R. Blake, and J. Napier, “The determination of foil thickness by scanning transmission electron microscopy,” Phys. Status Solidi (A), 31, 771 (1975).CrossRefADSGoogle Scholar
  5. 5.
    B. Z. Margolin, A. A. Nikolaev, E. V. Yurchenko, et al., “Analysis of embrittlement of VVER-1000 vessel materials during operation,” Vopr. Materialoved., No. 4(60), 108–123 (2009).Google Scholar
  6. 6.
    M. K. Miller, A. A. Chernobaeva, Y. I. Shtrombakh, et al., “Evolution of the nanostructure of VVER-1000 RPV materials under neutron irradiation annealing,” J. Nucl. Mater., 385, 615–622 (2009).CrossRefADSGoogle Scholar
  7. 7.
    E. A. Kuleshova, B. A. Gurovich, Ya. I. Shtrombakh, et al., “Microstructural behavior of VVER-440 reactor pressure vessel steels under irradiation to neutron fluences beyond the design operation period,” J. Nucl. Mater., 342, No. 1–3, 77–89 (2005).CrossRefADSGoogle Scholar
  8. 8.
    V. A. Gurovich, E. A. Kuleshov, Ya. I. Shtrombakh, et al., “Fine structure behavior of VVER-1000 RPV materials under irradiation,” J. Nucl. Mater., 389, 490–496 (2009).CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  • Ya. I. Shtrombakh
    • 1
  • B. A. Gurovich
    • 1
  • E. A. Kuleshova
    • 1
  • D. Yu. Erak
    • 1
  • S. V. Fedotova
    • 1
  • D. A. Zhurko
    • 1
  • O. O. Zabusov
    • 1
  • Yu. A. Nikolaev
    • 1
  1. 1.Institute of Reactor Materials and TechnologiesRussian Science Center Kurchatov InstituteMoscowRussia

Personalised recommendations