Skip to main content
Log in

Numerical modeling of the temperature distribution in a VVER fuel element

  • Published:
Atomic Energy Aims and scope

The temperature distribution in a VVER fuel element with deep burnup of nuclear fuel is studied. Numerical and analytical methods are used. It is shown that a stationary temperature distribution is established in no longer than 1 min. Analytical methods are used to obtain the temperature dependence of the radius of a fuel element in a stationary regime

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. N. Andrianov, “Atomic energy in the fuel-energy complex of Russia: challenges for development,” Vopr. At. Nauki Tekhn., Ser. Materialoved. Nov. Mater., No. 2(67), 7–15 (2006).

  2. V. I. Kuzmin, V. N. Golovanov, G. I. Maershina, et al., “Change of fuel state in VVER fuel elements with burnup 40–60 Mw·days/kg,” in: 5th Interdep. Conf. on Reactor Material Science, Dimitrovgrad, September 8–12, 1997, pp. 59–71.

  3. F. N. Kryukov, G. D. Lyadov, O. N. Nikitin, and A. P. Chetverikov, “Application of x-ray spectral analysis for determining local fuel burnup in VVER reactors,” in: Proc. of the State Science Center of the Russian Federation – Research Institute of Nuclear Reactors, Dimitrovgrad (2003), No. 4, pp. 3–13.

  4. M. A. Kalugin and V. I. Kuznetsov, “Numerical modeling of the burnup of mixed oxide fuel taking account of double heterogeneity,” At. Énerg. 80, No. 3, 221–223 (1996).

    Google Scholar 

  5. A. S. Shcheglov, V. D. Sidorenko, V. N. Proselkov, et al., “Formation and development of the surface layer of a VVER-440 fuel kernel,” ibid., 80, No. 3, 221–223 (1996).

    Google Scholar 

  6. S. Yu. Kurchatov, V. V. Likhanskii, A. A. Sorokin, and O. V.Khoruzhii, “RTOP code modeling of the radial distribution of heat release and plutonium isotope accumulation in high-burnup oxide fuel,” ibid., 92, No. 4, 317–324 (2002).

    Google Scholar 

  7. H.J. Matzke and J. Spino, “Formation of the rim structure in high burnup fuel,” J. Nucl. Mater., 248, 170–179 (1997).

    Article  ADS  Google Scholar 

  8. M. Mogensen, J. Pearce, and C. Walker, “Behaviour of fission gas in the rim region of high burn-up UO2 fuel pellets with particular reference to results from an XRF investigation,” ibid., 264, 99–112 (1999).

    ADS  Google Scholar 

  9. K. Une, K. Nogita, Y. Suzawa, et al., “Effects of grain size and pci restraint on the rim structure formation of UO2 fuels,” in: Proc. 2000 Int. Top. Meeting on LWR Fuel Performance, pubslished by the American Nuclear Society, Inc. (2000), pp. 615–625.

  10. A. Romano, M. I. Horvath, and R. Restani, “Evolution of porosity in the high-burnup fuel structure,” J. Nucl. Mater., 361, 62–68 (2007).

    Article  ADS  Google Scholar 

  11. Yu. K. Bibilashvili, V. G. Baranov, Yu. G. Godin, et al., “Extra-reactor modeling of the change in the properties of oxide fuel at high burnups,” Vopr. At. Nauki Tekhn., Ser. Materialoved. Nov. Mater., No. 1(59), 55–67 (2002).

  12. A. N. Andrianov, V. G. Baranov, G. V. Tikhomirov, and A. V. Khlunov, “Modeling nuclear-physical processes in the surface layer of a fuel kernel,” At. Énerg., 104, No. 6,353–358 (2008).

    Google Scholar 

  13. N. A. Kudryashov, A. V. Khhinov, and M. A. Chmykhov, “Thermal regimes of high burn-up nuclear fuel rod,” Com. in Nonlinear Sci. Numerical Simulation, 15, 1240–1252 (2009).

    Article  ADS  Google Scholar 

  14. C. Ronchi, M. Sheindlin, D. Staicu, and M. Kinoshita, “Effect of burn-up on the thermal conductivity of uranium dioxide up to 100.000 MWd/t,” J. Nucl. Mater., 327, 58–76 (2004).

    Article  ADS  Google Scholar 

  15. K. Morimoto, M. Kato, M. Ogasawara, and M. Kashimura, “Thermal conductivities of hypostoichiometric (U, Pu, Am)O2−x oxide,” ibid., 374, 378–385 (2008).

    ADS  Google Scholar 

  16. G. Espinosa-Paredes, A. Nunez-Carrera, and A.Vazquez-Rodriguez, “Simplified distributed parameters BWR dynamic model for transient and stability analysis,” An. Nucl. Energy, 33, 1245–1259 (2006).

    Article  Google Scholar 

  17. B. P. Nikolskii, O. N. Grigorov, and M. E. Pozin, Handbook of Chemistry. Vol. 1. General Information, Structure of Matter, Properties of the Most Important Materials, Laboratory Techniques, Khimiya, Moscow (1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Atomnaya Énergiya, Vol. 108, No. 3, pp. 145–151, March, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alyushin, V.M., Baranov, V.G., Kudryashov, N.A. et al. Numerical modeling of the temperature distribution in a VVER fuel element. At Energy 108, 184–193 (2010). https://doi.org/10.1007/s10512-010-9275-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10512-010-9275-2

Keywords

Navigation