Skip to main content
Log in

Magnetism and anomalous properties of plutonium

  • Published:
Atomic Energy Aims and scope

It is shown that because of their high magnetic susceptibility δ plutonium and its alloys are close to magnetic instabilities; dynamic effects of short-range magnetic order which are associated with the fluctuating magnetization density of electrons – spin fluctuations – play a large role in them. Long-range ferro- and antiferromagnetic order is suppressed. A model is developed for the spin fluctuations in plutonium. In this model, because of strong magneto-elastic coupling the spin-fluctuation energy depends on the volume of the crystal and is independent of temperature and spatial dispersion. It is shown that the contribution of the zero-point quantum spin-fluctuations is largely temperature-independent, as a result of which saturation of local magnetic moments is absent, the Curie–Weiss law for the magnetic susceptibility breaks down, and below the melting temperature plutonium is a strongly quantum system. An explanation is given for the thermal expansion anomalies of the δ phase of plutonium and its alloys on the basis of the theory of magneto-volume effect with a negative magneto-elastic coupling constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Lashley, A. Lawson, R. McQueeney, et al., “Absence of magnetic moments in plutonium,” Phys. Rev. B, 72, 54416 (2005).

    Article  ADS  Google Scholar 

  2. V. P. Silin and A. Z. Solontsov, “Contribution to the band theory of antiferromagnetism of metals,” Zh. Eksp. Teor. Fiz., 73, No. 3, 1073–1084 (1977).

    Google Scholar 

  3. L. Nordstrom and D. Smith, “Noncollinear inter-atomic magnetism,” Phys. Rev. Lett., 76, No. 23, 4420–4423 (1996).

    Article  ADS  Google Scholar 

  4. A. A. Ivanov, “Magnetic susceptibility of uranium, plutonium, and their alloys with other metals,” Author’s Abstr. of Candidate’s Dissertation in Technical Sciences, VNIINM, Moscow (1959).

    Google Scholar 

  5. V. P. Antropov, M. I. Katsnelson, A. I. Likhtenshtein, et al., “Electronic structure, magnetism, and anomalous lattice properties of different phases of plutonium,” Fiz. Tver. Tela, 32, No. 9, 2782–2790 (1990).

    Google Scholar 

  6. V. I. Anisimov, A. O. Shorkov, and J. Kunes, “Magnetic state and electronic structure of plutonium from first-principles calculations,” in: Condensed Matter (2006), No. 0610829vl.

  7. P. Soderlind and B. Sadigh, “Density-functional calculations of α, β, γ, δ, δ′, and ε plutonium,” Phys. Rev. Lett., 92, No. 18, 185702 (2004).

    Article  ADS  Google Scholar 

  8. A. Arko, J. Joyce, L. Morales, et al., “Electronic structure of α- and δ-Pu from photoemission spectroscopy,” Phys. Rev. B, 62, 1773–1779 (2000).

    Article  ADS  Google Scholar 

  9. S. Meot-Raymond and J. Fournier, “Localization of 5f electrons in δ-plutonium: evidence for the Kondo effect,” J. Alloys Compounds, 232, 119–125 (1996).

    Article  Google Scholar 

  10. A. Freeman and J. Darby (eds.), The Actinides: Electronic Structure and Related Properties, Academic Press, NY (1974), Vol. II.

    Google Scholar 

  11. P. Erdos and J. Robinson, Actinide Compounds, Plenum Press, NY (1983).

    Google Scholar 

  12. T. Moriya, Spin Fluctuations in Magnets with Collectivized Electrons [Russian translation], Mir, Moscow (1989).

    Google Scholar 

  13. A. Lawson, J. A. Roberts, B. Martinez, et al., “Invar model for the δ-phase Pu: thermal expansion, elastic and magnetic properties,” Phil. Mag., 86, 2713–2733 (2006).

    Article  ADS  Google Scholar 

  14. E. Wassermann, “Invars: moment-volume instabilities in transition metals and alloys,” in: Ferromagnetic Materials, edited by K. Buschow and E. Wohlfarth, North Holland, Amsterdam (1991), Vol. 5.

  15. N. Lang and H. Ehrenreich, “Itinerant-electron theory of pressure effects on ferromagnetic transition temperature: Ni and Ni–Cu alloys,” Phys. Rev., 168, No. 2, 605–622 (1968).

    Article  ADS  Google Scholar 

  16. A. Z. Solontsov, “Charge-density fluctuations in system with heavy fermions,” Fiz. Tver. Tela, 32, No. 1, 3–9 (1990).

    Google Scholar 

  17. A. Solontsov, “Spin fluctuations and anharmonicity in itinerant electron magnetism,” Intern. J. Mod. Phys. B, 19, No. 24, 3631–3681 (2005).

    Article  MATH  ADS  Google Scholar 

  18. C. Loong, B. Grier, S. Shapiro, et al., “Neutron scattering studies of the paramagnetic response in the mixed-valence alloy Ce1−x Th x at high energy,” Phys. Rev. B, 35, 3092–3101 (1987).

    Article  ADS  Google Scholar 

  19. A. Z. Solontsov and D. Wagner, “Zero-point spin fluctuations and magnetovolume effect in itinerant electron magnetism,” Phys. Rev. B, 51, 12410–12417 (1995).

    Article  ADS  Google Scholar 

  20. L. D. Landau, Theoretical Physics, Nauka, Moscow (1976), Vol. 5.

    Google Scholar 

  21. M. Shiga, “Spin fluctuations in itinerant frustrated systems,” in: Itinerant Electron Magnetism: Fluctuation Effects and Critical Phenomena, edited by D. Wagner,W. Brauneck, and A. Solontsov, Kluwer Academic Publisher, Dordrecht (1998), p. 1–14.

  22. Yu. Piskunov, K. Mikhalev, A. Gerashenko, et al., “Spin susceptibility of Ga-stabilized δ-Pu probed by 69Ga NMR,” Phys. Rev. B, 71, 174410 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Atomnaya Énergiya, Vol. 107, No. 4, pp. 214–221, October, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solontsov, A.Z., Orlov, V.K., Kiselev, S.A. et al. Magnetism and anomalous properties of plutonium. At Energy 107, 263–271 (2009). https://doi.org/10.1007/s10512-010-9224-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10512-010-9224-0

Keywords

Navigation